
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

Improving Parallelism in git-grep

Matheus Tavares Bernardino

Final Essay [v2.0]

mac 499 - Capstone Project

Program: Computer Science

Advisor: Prof. Dr. Alfredo Goldman

São Paulo

January 19, 2020

Abstract

Matheus Tavares Bernardino. Improving Parallelism in git-grep. Capstone Project Report

(Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2019.

Version control systems have become standard use in medium to large software development.

And, among them, Git has become the most popular (Stack Exchange, Inc., 2018). Being

used to manage a large variety of projects, with di�erent magnitudes (in both content and

history sizes), it must be build to scale. With this in mind, Git’s grep command was made

parallel using a producer-consumer mechanism. However, when operating in Git’s internal

object store (e.g. for a search in older revisions), the multithreaded version became slower

than the sequential code. For this reason, threads were disabled in the object store case. The

present work aims to contribute to the Git project improving the parallelization of the grep

command and re-enabling threads for all cases. Analyzes were made on git-grep to locate

its hotspots, i.e. where it was consumming the most time, and investigate how that could be

mitigated. Between other �ndings, these studies showed that the object decompression rou-

tines accounted for up to one third of git-grep’s total execution time. These routines, despite

being thread-safe, had to be serialized in the �rst threaded implementation, because of the

surrouding thread-unsafe object reading machinery. Through git-grep and object reading

refactoring parallel access to the decompression code was allowed, and an speedup of more

than 3x was achieved (running git-grep with 8 threads in 4 cores with hyper-threading). This

successfully allowed the threads reactivation with good performance. Additionally, some pre-

viously possible race conditions in git-grep’s code and a bug with submodules were �xed.

Keywords: parallelism. parallel computing. version control systems. Git. git-grep.

ii

Glossary

Commit represents a snapshot of a given project being tracked by Git.

In this document, commits are referenced in the following

format: abbreviated hash (title, yyyy-mm-dd).

Patch a �le that speci�es a collection of related changes to some

speci�c code �le(s). After applied in a repository tracked

by Git, a patch can generate a commit. In the Git project,

contributions are sent by email in patch format.

Patch Set or Series a group of patches that usually share the same thematic

and/or goal. There might also be dependencies between a

patch and its "parent".

Patch Version the patch’s current iteration in the revision process. It’s very

common for a patch not to be merged in its �rst version. So

after getting reviewed, the author can send a new version

with the required changes.

Zlib In�ation the operation from the zlib API to retrieve data previously

compressed with the DEFLATE algorithm (Deutsch, 1996).

Also known as Zlib Decompression.

De�nitions extracted from Tavares, 2019a, with some modi�cations.

iii

Contents

Glossary ii

1 Introduction 1

1.1 Context and Historical Background . 1

1.1.1 Version Control Systems . 1

1.1.2 A Summary of Git’s History . 2

1.2 Motivation and Goal . 2

1.2.1 The git-grep Command . 2

1.2.2 Performance of git-grep . 3

1.2.3 Objective . 6

1.3 Document Structure . 6

2 Preparatory Period 7

2.1 Getting to Know the Community . 7

2.2 Google Summer of Code . 8

2.3 First Contribution . 8

3 Metodology 11

3.1 Work�ow . 11

3.2 Performance Tests . 12

4 Theoretical Background 14

4.1 Git’s Objects . 14

4.2 Storing Formats . 17

4.3 Object Reading . 19

5 Pro�ling 23

6 Development 29

6.1 First Approach: Protect Only Global States 29

iv

6.2 Next Approach: Parallel zlib Decompression 31

6.2.1 Race Condition at Delta Base Cache 32

6.2.2 Dealing with --textconv and --recurse-submodules 36

6.2.3 Analysing Call Graphs . 40

6.2.4 Allowing More Parallelism on Submodules Functions 42

6.3 Additional Improvements to git-grep . 43

6.3.1 Removing Thread-Safe Code from Critical Section 43

6.3.2 Bug�x in submodule grepping . 45

6.4 Current State . 46

6.4.1 Links for the patch set . 47

7 Results and Conclusions 49

7.1 Results . 49

7.1.1 On Grenoble . 49

7.1.2 On Mango . 50

7.1.3 Patch 6.2 and Working Tree Speedup 52

7.2 Conclusions . 54

7.3 What is next . 55

8 Personal and Critical Assessment 57

8.1 Main Di�culties . 57

8.2 Extra Activities . 59

Appendices

A Machines Used in Tests 61

Annexes

A GCC patch for call graph dumping 64

References 66

1

Chapter 1

Introduction

1.1 Context and Historical Background

1.1.1 Version Control Systems

A version control system (VCS), as de�ned in the Pro Git book (Chacon and Straub,

2014), is "a system that records changes to a �le or set of �les over time so that you can recall
speci�c versions later". We usually talk of VCSs in terms of source code versioning, but

most of them are able to handle any �le format. Given a set of �les to track, these systems

allow the user to perform a number of operations such as: create a new version of the set

with a given name and description, see the di�erences between versions, restore a past

version, �nd in which version a line was changed (and, with the version description, get

to know why it was changed), etc.

Using a VCS wisely can also be of great bene�t for future contributors of a project.

More than just the present state of the project, VCSs provide a lot of metadata on how the

project has evolved over time. This is specially interesting when developers take care to

create small incremental versions with informative descriptions. These can later be used

to understand or recap why certain decisions were made (or more practically, why some

lines of code exist). And these are just some of the many advantages of using a VCS.

2

1 | INTRODUCTION

1.1.2 A Summary of Git’s History

Among the version control tools available today, Git, an open source distributed1 VCS,

has become the most popular for source code management. Last year’s Stack Over�ow

Developer Survey showed that almost 90% of the interviewed developers were versioning

their code through Git (see Stack Exchange, Inc., 2018). And since 2012 it has had more

Google search interest then most of the other major VCSs, such as Subversion, Mercurial,

Perforce and CVS (see Google Trends, 2019).

Despite its huge popularity, Git has not been around for so long. The �rst version

was released in 2005, born from a need of the Linux kernel community. In that year, the

proprietary VCS that the community had been using for three years then, BitKeeper, got

its free license revoked. Linus Torvalds, the creator of Linux, and the community started

to look for alternatives. But none of them seemed to fully satisfy the project needs at

that moment. Some of them were too slow, some were centralized and, thus, wouldn’t

�t with the Linux work�ow, and so on. In the meantime, Torvalds decided to work on a

set of scripts that would serve him as "a fallback [...] if nothing out there works right now"
(Torvalds, 2005). He didn’t even proposed it as a VCS back then, but as "a distribution

and archival mechanism". He shared the idea with the community and some members also

engaged in the early development. Latter that year, the o�cial 1.0.0 version of that set of

scripts was released, already named as "Git". In the following years many other projects

adopted Git as their VCS and its usage was even more spread out by online hosting services

such as GitHub and GitLab.

To this date, over 1700 people have contributed to the project with more then 40000

accepted patches. Junio Hamano has been the maintainer since 2005.

1.2 Motivation and Goal

1.2.1 The git-grep Command

Git is composed of many commands, such as add, commit, push, grep and rebase.

The grep2 command is the one that is going to be targeted by this project. It is used to �nd

lines in the project �les that match a user-given pattern. Di�erent from GNU grep, git-grep

is Git-aware and, thus, can use Git features in its search. For example, it’s possible to use

1In centralized VCSs, the clients query a centralized service for snapshots of the repository. The server
is the one that has all the versioning information (both the tracked �les and the version history). In Dis-
tributed VCSs, however, each client hold a full copy of the repository. There are pros and cons of each, but
a commonly mention advantage of the second is that there is no single point of failure.

2https://git-scm.com/docs/git-grep

https://git-scm.com/docs/git-grep

1.2 | MOTIVATION AND GOAL

3

Git’s text conversion drivers for binary �les, search a past revision without needing to

visit it, limit the search to the �les being tracked, and etc.

There’re two "operation modes" for git-grep: working tree and object store. The �rst

corresponds to a search in the checked out �les, i.e., the actual on-disk �les in the current

version. The latter represents a search in Git’s internal data store, which allows searching

in older versions of the tracked �les.

1.2.2 Performance of git-grep

Git is currently used to manage a large number of projects of varying magnitudes (in

both code and history sizes). As an example, Gentoo’s3 repository is about 1.3GB while

chromium’s4 have 19GB of data. Since a VCS is usually a constant part of the development

process, it is desired to be fast, even with larger projects. For this reason, the Git community

focuses heavily on performance and scalability.

With that in mind, git-grep was found to become substantially slow in larger reposi-

tories, especially for object store grepping. To solve this issue and take advantage of the

increasingly common multicore processors, the command was made parallel in commit

5b594f4 ("Threaded grep", 2010-01-25). The threaded implementation is based on the

well known producer-consumer mechanism: the main thread is responsible for iterating

through the tracked �les (or objects, when searching in Git’s internal storage) and adding

them to a list. Meanwhile, the worker threads take these individual tasks from the list,

read the respective �le or object and peform the regular expression search. The list is

subdvided in two sections: "tasks yet to be picked" and "tasks being performed or already

completed". The completed ones are di�erentiated from the in-progress ones by a "done"

�ag. Every time a worker thread �nishes a task it tries to update the boundary between

these two sections, printing out the results of the �nished tasks and removing them from

the list.

The parallelization worked very well for the working tree case. However, object store

grepping turned out to become even slower when multithreaded. One of the reasons for that

could be that object reading (which is a rather time consuming operation) wasn’t thread-

safe and thus, needed to be serialized. So, because of the observed slowdown, threads

were disabled for this mode in 53b8d93 ("grep: disable threading in non-worktree

case", 2011-12-12). It must be noted, though, that this patch is from 2011 and over 200

patches have been applied to the a�ected code since then. So it could be the case that

multithreading nowadays could bring some speedup for the object store grepping. To test

3https://gitweb.gentoo.org/repo/gentoo.git/
4https://chromium.googlesource.com/chromium/

https://gitweb.gentoo.org/repo/gentoo.git/
https://chromium.googlesource.com/chromium/

4

1 | INTRODUCTION

that, we downloaded the Git repository5 at commit 4c86140, ("Third batch", 2019-09-18),

and applied the following small change (Patch 1.1) to re-enable threads in the object store

case. Note that since the threaded code for this case hadn’t been removed but only disabled,

we only had to erase the condition that did it. Of course, the locks that used to protect the

object store grep could have become outdated, but the code seemed to behave as expected

with the said patch.

Program 1.1 Patch to re-enable threads in the object store git-grep

1 diff --git a/builtin/grep.c b/builtin/grep.c

2 index 2699001fbd..fa5135a5ea 100644

3 --- a/builtin/grep.c

4 +++ b/builtin/grep.c

5 @@ -1062,7 +1062,7 @@ int cmd_grep(int argc, const char **argv, const char *prefix)

6 pathspec.recursive = 1;

7 pathspec.recurse_submodules = !!recurse_submodules;

8

9 - if (list.nr || cached || show_in_pager) {

10 + if (show_in_pager) {

11 if (num_threads > 1)

12 warning(_("invalid option combination, ignoring --threads"));

13 num_threads = 1;

The chromium’s repository was used as the test data (because it’s a relatively large

repository in both data and commit history). Using the test metodology described at

Section 3.2, the patched git-grep was executed with two di�erent regular expressions in

both working tree and object store, varying the number of threads. The mean elapsed

times can be seen at Figures 1.1 and 1.2, in 95% con�dence intervals. As we can observe,

multithreading performance was still worse than sequential for the object store grep in

many cases.

5https://git.kernel.org/pub/scm/git/git.git/

https://git.kernel.org/pub/scm/git/git.git/

1.2 | MOTIVATION AND GOAL

5

1 2 4 8
0

5

10

15

20

25

6.14

3.78 3.21 3.84

Working Tree

1 2 4 8

14.07 13.35

21.8

24.23

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

git-grep mean execution times
(regex 1 on grenoble)

Figure 1.1: Mean elapsed time of 30 git grep executions in chromium’s repository with regex 1
("abcd[02]"), for di�erent parameters. Executed on machine grenoble (see Appendix A).

1 2 4 8
0

5

10

15

20

25

9.23

5.23
4.03 4.47

Working Tree

1 2 4 8

17.2

13.53

20.13

24.51
Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

git-grep mean execution times
(regex 2 on grenoble)

Figure 1.2: Mean elapsed time of 30 git grep executions in chromium’s repository with regex 2
("(static|extern) (int|double) *"), for di�erent parameters. Executed on machine grenoble (see
Appendix A).

6

1 | INTRODUCTION

1.2.3 Objective

The main goal of this project is to improve git-grep’s parallelism, especially in

the object store case, allowing to re-enable threads with a good speedup. In this process,

it is also desirable to implement an optimized and secure thread access to the object

reading functions. These are currently not thread-safe and thus, the multithreaded code

at git-grep must use a mutex when calling them. However, the more serialized sessions,

the less performance gain multithreading can achieve. So, in order to improve parallelism,

we aim to protect the object reading operations from the inside, taking care to avoid

serializing some time consuming sections that could be safelly performed in parallel.

This way, git-grep will no longer need its external mutex for object reading calls and,

additionally, will have its threads performing more work in parallel, pulling a greater

performance.

Besides its usefulness for git-grep, this thread-friendly API can be used, in the future,

to introduce or improve parallelism in other sections of the codebase as well. This is

interesting because many commands depend on the object reading API. Especially some

that were already reported as slow under some circumstances, such as git-blame (Chen,

2018), and thus, could be targeted for a future parallel implementation.

1.3 Document Structure

This document is organized in the following structure: Chapter 2 describes the prepara-

tory period taken to understand Git’s codebase and discuss possible strategies with the

community. Chapter 3 presents the work�ow metodology adopted as well as how the

performance tests were executed. Chapter 4 explains the necessary theoretical concepts

regarding Git’s objects and the object reading operation. Chapter 5 shows the pro�llings

made to locate the bottlenecks in git-grep’s code. Chapter 6 describes the process of

improving git-grep’s parallelism by allowing parallel decompression, and all the corner

cases that had to be handled. Chapter 7 presents the benchmarking results for the code

with our improvements and the �nal conclusions. Finally, Chapter 8 disscuss the subjective

part, with the author’s personal assessment and thought on this project.

As mentioned in the Glossary, all commits in this document will be referenced in the

following format: abbreviated hash (title, yyyy-mm-dd). This is also the format used in

the Git project iteself. The full commit information can then be inspected running git

show <abbreviated hash> in the respective repository.

7

Chapter 2

Preparatory Period

2.1 Getting to Know the Community

Before getting into some of Git’s inner workings and the development process for this

project, it’s important to comment about the preparatory period. Prior to this year, I had

no previous experience in contributing to Git. So before even de�ning the project’s scope,

it was necessary to take some time to get to know the community and learn the basics.

I.e. how the Git community interacts, the contribution work�ow, how the codebase is

structured and how to do the basic actions in it such as compilling, running tests, etc.

Some great resources made this learning process easier. First, the documentation

included in Git’s repository (Git Project, 2019) and the very informative Git-Pro book

(Chacon and Straub, 2014). Complementarily, there were many great technical blog

posts on the web like Spajic, 2018, which explains how Git keeps track of the di�erences

between working tree, staging and cache. And last but not least, the repository’s own

commit history and the mailing list archive are two excellent sources of information.

Inspecting the commit history with a combination of git-log, git-blame and git-show, it

was possible to revisit some of the decisions made during the development process of Git

and understand why some line of codes are the way they are nowadays. And through the

mailing list archive, we could also see the exchanged conversations before these decisions,

as well as why some proposed ideas were not viable at that time and thus, had to be

dropped.

8

2 | PREPARATORY PERIOD

2.2 Google Summer of Code

The idea for this project was also submitted as a Google Summer of Code (GSoC)

proposal (Tavares, 2019b). GSoC1 is a program by Google which �nances students for

three months to work on an open source software. One of the great oportunities GSoC

brings is having the assistance of mentors from the community to help the students during

the development of the project.

To write the proposal for GSoC, some additional code studying was required. In this

process, the interaction with the community was vital. I didn’t have the knowhow of the

code to suggest an improvement plan by myself. But the more experienced developers

promptly replied to my questions and helped me de�ning what could be improved in Git in

terms of parallelism (as in Tavares, Couder, et al., 2019). In the quoted mail thread, I also

want to highlight Duy Nguyen’s help in the initial git-grep pro�llings and implementing a

proof of concept parallel decompression (Nguyen, 2019) to evaluate the potential speedup

we could achieve with this project.

The project got selected2 for GSoC 2019. To allow my mentors and the community

to track my progress, I kept a weekly-updated blog (Tavares, 2019c). Note that the main

goal of the GSoC proposal wasn’t to improve git-grep threading, but to make pack access

functions thread-safe (see Section 4.2), so that they could be later directly used in a threaded

environment with good performance. Therefore, the work git-grep would be a follow-up

task. However, as described in the mentioned blog, we reconsidered the initial plan during

the early development phase and decided to target git-grep from the start. This way, we

could more easily and quickly test how the pack access changes a�ected performance,

with a code that already made use of it. Also, we decided to seek the said improvements for

general object reading instead of just pack reading. This is because the strategies adopted

could easily be employed in the general case, bene�ting more code paths.

2.3 First Contribution

The application for a GSoC project in Git involves the previous development of a

micro-project3. Between other objectives, these small contributions are intended to help the

applicant get used to the contribution work�ow. In fact, this was also my �rst contribution

to Git, helping me to get used with the code before the actual GSoC period began.

1More info about GSoC is available at https://summerofcode.withgoogle.com/.
2https://summerofcode.withgoogle.com/projects/#6477677521797120
3https://git.github.io/SoC-2019-Microprojects/

https://summerofcode.withgoogle.com/
https://summerofcode.withgoogle.com/projects/#6477677521797120
https://git.github.io/SoC-2019-Microprojects/

2.3 | FIRST CONTRIBUTION

9

The micro-project I selected was "Use dir-iterator to avoid explicit recursive directory
traversal"4. The idea was to �nd a place in the codebase that still used the opendir()/

readdir()/closedir() API and make it use the Git-internal dir-iterator API. One of the

advantages of the latter is that it is not recursive, and thus doesn’t have the risk of stack

over�owing.

Getting to work on this micro-project was an excelent oportunity to exercise the patch

sending work�ow. A patch is a text �le containing a set of correlated modi�cations to be

applied over the source code of the project. It also contains a description of the changes

and a reason for making them. After getting reviewed and accepted (possibly after some

rerolls), they can be picked up by the project’s maintainer and applied in the project’s

repository as a Git commit. In Git, the patch sending and reviewing happens through the

mailing list. I had already worked with a mail-based work�ow before, contributing to the

Linux kernel. But every project has its own particularities, so this micro-project allowed

me to learn more about Git’s wor�ow.

The micro-project turned out to be more complex than we previously thought. The

choosed place to make use of the dir-iterator API was a function in builtin/clone.c,

used to handle the �les under .git/objects in a local clone. In the early development, we

found out some inconsistencies regarding its handling of symlinks. Basically, it was calling

a lib function which had an OS-speci�c behavior upon certain conditions. The result was

that cloning a repository with symlinks at .git/objects would produce di�erent results

in GNU/Linux vs. OSX or NetBSD. So, before converting it to use the dir-iterator API

we worked to make the behavior consistent across di�erent OSs. It was also necessary

to adjust the dir-iterator API with options to follow symlinks and abort on errors to

make it compatible with the place we were going to use it. So in the end, this series of

patches turned out to have 10 patches and iterate until version 8. It contained not only the

dir-iterator conversion at clone but also improvements and test adding to this API. Some

patches were produced in collaboration with other contributors and some older patches

sent to the mailing list but not merged back then, were updated and incorpored. The �nal

list of patches sent (and already merged into master, being part of Git v2.23.0) are:

• [1/10]: clone: test for our behavior on odd objects/* content

https://public-inbox.org/git/a2016d9d3b8e54�9b9e6dfbd3ab4ce4a1bf7e4d.1562801254.git.matheus.

bernardino@usp.br/

• [2/10]: clone: better handle symlinked �les at .git/objects/

https://public-inbox.org/git/47a4f9b31c03499bc1317b9a0fccb11c2f5b4d34.1562801254.git.matheus.

bernardino@usp.br/

4https://git.github.io/SoC-2019-Microprojects/#use-dir-iterator-to-avoid-explicit-recursive-directory-traversal

https://public-inbox.org/git/a2016d9d3b8e54ff9b9e6dfbd3ab4ce4a1bf7e4d.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/a2016d9d3b8e54ff9b9e6dfbd3ab4ce4a1bf7e4d.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/47a4f9b31c03499bc1317b9a0fccb11c2f5b4d34.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/47a4f9b31c03499bc1317b9a0fccb11c2f5b4d34.1562801254.git.matheus.bernardino@usp.br/
https://git.github.io/SoC-2019-Microprojects/#use-dir-iterator-to-avoid-explicit-recursive-directory-traversal

10

2 | PREPARATORY PERIOD

• [3/10]: dir-iterator: add tests for dir-iterator API

https://public-inbox.org/git/bbce6a601b9dfe018fb482298ab9e4e79968cd05.1562801254.git.matheus.

bernardino@usp.br/

• [4/10]: dir-iterator: use warning_errno when possible

https://public-inbox.org/git/0cc5f1f0b4ea7de4e0508316e861ace50f39de1f.1562801255.git.matheus.

bernardino@usp.br/

• [5/10]: dir-iterator: refactor state machine model

https://public-inbox.org/git/f871b5d3f4c916599265d34bbb0f7aeb021392c8.1562801255.git.matheus.

bernardino@usp.br/

• [6/10]: dir-iterator: add �ags parameter to dir_iterator_begin

https://public-inbox.org/git/fe838d7eb4a3f9a�ca32478397abf8aca9b0230.1562801255.git.matheus.

bernardino@usp.br/

• [7/10]: clone: copy hidden paths at local clone

https://public-inbox.org/git/3da6408e045de6e39166227a60472bd1952664ad.1562801255.git.

matheus.bernardino@usp.br/

• [8/10]: clone: extract function from copy_or_link_directory

https://public-inbox.org/git/af7430eb2c29ce35691e15d68e1c59d48d6e9144.1562801255.git.matheus.

bernardino@usp.br/

• [9/10]: clone: use dir-iterator to avoid explicit dir traversal

https://public-inbox.org/git/e8308c74085689876e25cc88e5628cfd68fc1606.1562801255.git.matheus.

bernardino@usp.br/

• [10/10]: clone: replace strcmp by fspathcmp

https://public-inbox.org/git/782ca07eed2c9bac4378e5128�996b25ed86a43.1562801255.git.matheus.

bernardino@usp.br/

The cover letter for this series can be seen at: https://public-inbox.org/git/cover.

1562801254.git.matheus.bernardino@usp.br/.

https://public-inbox.org/git/bbce6a601b9dfe018fb482298ab9e4e79968cd05.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/bbce6a601b9dfe018fb482298ab9e4e79968cd05.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/0cc5f1f0b4ea7de4e0508316e861ace50f39de1f.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/0cc5f1f0b4ea7de4e0508316e861ace50f39de1f.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/f871b5d3f4c916599265d34bbb0f7aeb021392c8.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/f871b5d3f4c916599265d34bbb0f7aeb021392c8.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/fe838d7eb4a3f9affca32478397abf8aca9b0230.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/fe838d7eb4a3f9affca32478397abf8aca9b0230.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/3da6408e045de6e39166227a60472bd1952664ad.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/3da6408e045de6e39166227a60472bd1952664ad.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/af7430eb2c29ce35691e15d68e1c59d48d6e9144.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/af7430eb2c29ce35691e15d68e1c59d48d6e9144.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/e8308c74085689876e25cc88e5628cfd68fc1606.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/e8308c74085689876e25cc88e5628cfd68fc1606.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/782ca07eed2c9bac4378e5128ff996b25ed86a43.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/782ca07eed2c9bac4378e5128ff996b25ed86a43.1562801255.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1562801254.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1562801254.git.matheus.bernardino@usp.br/

11

Chapter 3

Metodology

3.1 Work�ow

The work�ow adopted in this project roughly followed these steps:

1. Get to know the Git community and the contributing process, trying to make the

�rst contributions.

2. Study the codebase and related necessary theory such as the concept of objects in

Git, their storage format, etc.

3. Talk with the community on possibilities of contributions to improve parallelism in

Git. Also try developing some intuition on the possible bottlenecks.

4. Pro�le the git-grep code and try to locate the current bottlenecks.

5. Try to improve git-grep’s parallelism with the smallest and simplest change set

possible.

6. Validate the results from the previous item, checking the code corectness and repeat

from item 3.

To validate the code correctness, we used the test suite already included in Git’s

repository. Sometimes, it was necessary to include new tests as well. The tests were

executed using Travis-CI1.

It’s important to highlight the concern with producing small incremental changes at a

time. Since we are making patches to a huge project being used worldwide, we must make

1https://travis-ci.org/

https://travis-ci.org/

12

3 | METODOLOGY

sure, at every step, that the code keeps working as expected. So going for a too big step

can be risky, even though it might seem viable.

The Git repository was downloaded from https://git.kernel.org/pub/scm/git/git.git/.

The patches from this project are based on the master branch. The exactly commit will

depend of the patch set version, as we rebased the series before sending each version. But

for the last version (v2), it was commit 4c86140 ("Third batch", 2019-09-18).

For all the added code related to threading, we used the POSIX Threads API. Note,

however that Git also runs on systems where this API is not natively available. For

these cases, though, the codebase already implements a conversion header. This way

programmers can freely use a single wrapper API, which will then use the underlying

threads implementation during compile time.

3.2 Performance Tests

To execute the performance tests both before and after the attempt for parallel im-

provement, chromium’s codebase was chosen as the testing data. This choice came mainly

because of two reasons:

• It’s a relatively large repository in both history size and content size.

• Chromium’s developers already reported some di�culties with a couple of Git

commands that were slow in their daily usage (see Zager, 2014). We also wrote to

the Chromium community asking if they still had those di�culties and they co�rmed

(see Tavares, Chen, et al., 2019).

Chromium contains di�erent �le formats, so two regular expressions were crafted to

use as test cases:

• Regex "1": "abcd[02]"; and

• Regex "2": "(static|extern) (int|double) *".

The �rst is arti�cial, looking for a generic pattern in no particular �le format. The second

is a more realistic use case, strieving to �nd occurrences of speci�c pointer declarations

in C/C++ code. In terms of complexity, the second takes more time to get executed. We

purposely used one more complex regex to try capturing the multithreaded performance

when regex matching took longer to execute.

The chromium repository was downloaded from https://chromium.googlesource.com/

chromium/src/ at commit 03ae96f (“Add filters testing at DSF=2”, 04-06-2019). A git

gc execution was then invoked to make sure the repository’s objects were packed (as the

https://git.kernel.org/pub/scm/git/git.git/
https://chromium.googlesource.com/chromium/src/
https://chromium.googlesource.com/chromium/src/

3.2 | PERFORMANCE TESTS

13

initial goal was to improve the parallel access to pack�les). But note that the improvements

made during this project should also speed up the reading of loose objects.

Unless otherwise mentioned, the machine used for the tests was grenoble and

the command ran was git -C <path to chromium> --no-pager grep --color=never

--threads=<number of threads> <regex>. For the test cases on the object store, an additional

--cached option was used, and for the regex 2, --extended-regexp was also given. For each

test case, the above command was repeated 30 times to calculate the con�dence interval

with 95% of con�dence. The interval was calculated with the Student’s t-distribution us-

ing a custom python script named cint2 and ploted using pyplot3. Before the batches of 30

runs, two warmup executions were also dispatched to populate the machine caches.

Some tests were also performed on the machine mango, to check the performance with

SSD. It’s important to run the tests on di�erent hardware because our problem is very

closely related to I/O. Therefore, the proposed changes could bring a speedup for one

storage device but be ine�ective on others, or even bring a slowdown. More information

on the architecture of the machines used can be seen in Appendix A.

Finally, since power management can interfere with the performance of the running

applications, it’s important to mention that, for mango, which is a laptop, all performance

tests were executed while connected to the power source. grenoble is a desktop.

2https://github.com/matheustavares/cint/
3https://matplotlib.org/api/pyplot_api.html

https://github.com/matheustavares/cint/
https://matplotlib.org/api/pyplot_api.html

14

Chapter 4

Theoretical Background

To understand why git-grep on object store was so much slower (as seen in Subsection

1.2.2), even before pro�lling the code, we decided to take some time to understand how

the object store works. As we will later discuss, understanding the problem’s domain �rst

turned out to be more helpful for improving performance than going straight scanning the

codebase for local code structures that could be optimized. So as a �rst step, we studied

the concept behind Git objects as well as their storage format on disk. We also examined

the codebase to cromprehend how they are read, since this seemed to be a considerably

slow operation during git-grep execution. In this chapter, we will present the information

gathered.

4.1 Git’s Objects

When running git-add followed by git-commit, the contents of the commited �les

will be internally stored by Git in its object store (in the .git/objects directory). In fact,

not only the �les’ contents, but also the directory tree structure and the commit itself are

represented and stored as objects.

Conceptually, Git’s data store can be visualized as an in-disk key-value table. Each object

is stored in a compressed binary format and it’s referenced by its hash. For compression,

Git uses zlib, which implements the lossless DEFLATE algorithm (see Deutsch, 1996 for

DEFLATE’s speci�cation and Roelofs et al., 2006 for zlib’s technical details). For hashing,

Git uses the SHA-1 algorithm1 (Eastlake and Jones, 2001), which is implemented in many

libraries. The actual library used by the git binary is choosen at compile-time and may be,

1At the time this thesis is being written, there’s an ongoing plan to migrate Git’s hashing from SHA-1 to
SHA-256. More information about it is available at https://github.com/git/git/blob/master/Documentation/
technical/hash-function-transition.txt

https://github.com/git/git/blob/master/Documentation/technical/hash-function-transition.txt
https://github.com/git/git/blob/master/Documentation/technical/hash-function-transition.txt

4.1 | GIT’S OBJECTS

15

for example: OpenSSL, Apple’s Common Crypto library or internal Git implementations.

The hash is taken before compression and not only the object content is hashed, but also

metadata present in the object’s header.

It’s important to notice that since objects are indexed by their hashes, each object is,

by consequence, immutable (because changing the content would lead to a new hash and

thus, a new object). So when amending a commit, for example, Git is not really modi�ng

the said commit but creating a new one and making the current branch head point to it.

The outdated version is kept for a while, but being a dangling commit, it will be eventually

removed by auto gc (gc stands for garbage collect). This is a maintenance command

ocasionally ran by Git to perform cleanup and repository optimization tasks (see section

10.7 of Chacon and Straub, 2014 for more info). One of these tasks is speci�cally the

removal of objects that are not reachable by any commit (but this is only done after a

speci�c time has passed since the object creation).

There are currently six types of objects implemented in Git. Conceptually, though,

we can think of them in terms of only four: blob, tree, commit and tag. The other two,

ofs-delta and ref-delta, are used to represent instances of these previous four types in a

more memory e�cient manner. They do that by allowing to store only what is di�erent

between two objects when they have very similar content. But we will talk more about

these two delta objects in the following section. For now, let’s focus on the �rst four. The

following de�nitions are based on Shaffer et al., 2019 and the Sections 2.6 and 10.2 of the

Git Pro book (Chacon and Straub, 2014):

• Blob: stores a generic stream of bytes. This is the most "�exible" object type, having

only a very small header and no �xed structure for its contents. The most common

use for a blob is to store contents of �les tracked by Git. But just the contents, no

�lesystem information such as the �lename or permissions, which are stored by

the tree object. A new blob is created, for example, in the invocation of git-add.

Another use for blobs is to store Git notes2.

• Tree: a table, mapping names to objects. Its most common use is to represent a

directory tree, listing �les and subdirectories. Each entry contains the �lename,

permissions and a reference to the object that represents it internally (a blob for

regular �les and another tree for subdirectories).

• Commit: represents one revision in the project. It holds information about the

author, commiter, date, associated message, and etc. This object also contains ref-

erences to: a tree object, which is a snapshot of the repository’s root directory at

2See https://git-scm.com/docs/git-notes

https://git-scm.com/docs/git-notes

16

4 | THEORETICAL BACKGROUND

the given commit; and a possible list of other commit objects, which represents its

parents.

• Annotated Tag: Note that Git has two kinds of tags: lightweight and annotated.

Both work as a label to another object (which is generally a commit). The �rst one

is implemented as a simple �le at .git/refs/tags/, named by the tag name, and

containing the hash of the referenced object. The second one, though, is a full Git

object, being stored at .git/objects/ and referenced by its hash. It not only contains

the tag name and the hash of the referenced object but also the tagger name, email

and date. Annotated tags also permits the addition of a message and GPG3 signing.

Figure 4.1 illustrates the structures of blobs, trees and commits, as well as the relation-

ships between these objects.

blob (ac240)

Software XY (v1.0)

This repository contains ...

blob (ef921)

main: main.c
 gcc $< -o $@

blob (aa346)

#include <stdio.h>
int main(){ ...

commit (87efd)
f54edtree

[]parents

...

tree (e901a)
blob Makefile ef921

blob main.c aa346

...

...

tree (f54ed)
blob README ac240

tree src e901a

...

...

Figure 4.1: Example diagram of Git objects in a repository.
(Based on the GPLv2 image at https://github.com/schacon/gitbook/blob/master/assets/ images/
figure/objects-example.png.)

Knowing the above de�nitions, it’s already possible to mention one of Git’s optimiza-

tions when storing �les: from one commit to another, it’s not really necessary to recreate

objects that didn’t change (because both their contents and, by consequence, their hashes

will be the same). So instead, Git will just reuse the blobs and trees already created, under

this circumstance. An example diagram of reused objects can be seen in Figure 4.2.

3https://www.gnupg.org/

https://github.com/schacon/gitbook/blob/master/assets/images/figure/objects-example.png
https://github.com/schacon/gitbook/blob/master/assets/images/figure/objects-example.png
https://www.gnupg.org/

4.2 | STORING FORMATS

17

blob (ac240)

Software XY (v1.0)

This repository contains ...

blob (ef921)

main: main.c
 gcc $< -o $@

blob (aa346)

#include <stdio.h>
int main(){ ...

commit (87efd)
[]parents

f54edtree

...

tree (e901a)
blob Makefile ef921

blob main.c aa346

...

...

tree (f54ed)
blob README ac240

tree src e901a

...

...

commit (ef3f1)
[87efd,]parents

c73bctree

...

tree (c73bc)
blob README bb023

tree src e901a

...

...

blob (bb023)

Software XY (v2.0)

This repository contains ...

Figure 4.2: Example diagram of Git objects being reused.
The above �gure represents a repository in which the only change between commits 87efd and
ef3f1 is the replacement of "v1.0" to "v2.0" in the ./README �le. Note how Git will reuse already
created objects when they don’t change.

The Pro Git book by Scott Chacon and Ben Straub (Chacon and Straub, 2014) con-

tains a dedicated chapter on Git’s internals (Chap. 10) where it is possible to �nd more

information on Git’s objects and how/when they are created. Scott also hosted a very

complete introductory talk on Git (Chacon, 2008), which addresses the basics on objects

types.

4.2 Storing Formats

When creating new objects, Git will usually store them in the "loose" format, i.e.

creating a new �le at .git/objects containing the object’s content (compressed binary)

and named by its hash. However, this is not the most e�cient format. For example, when

changing a single line of an already commited �le, Git will create a whole new blob even

18

4 | THEORETICAL BACKGROUND

though most of the content is the same.

A more economic format is the packfile. These �les, which have the .pack extension,

are found at .git/objects/pack alongside homonymous .idx �les. The latter are used for

indexing, which is crucial since packfiles can hold many objects in a single �lesystem

entry. The object entries are also stored in binary and zlib compressed format but they

bene�t from an extra level of compression: delti�cation. I.e., two or more versions of very

similar objects are not stored redundanctly but, instead, a single base version is stored

together with instructions on how to reconstruct the others. These instructions are stored

in what’s called a delta object, which is only valid in packfiles. As the packing format

documentation says:

"The delta data is a sequence of instructions to reconstruct an object from the

base object. If the base object is delti�ed, it must be converted to canonical

form �rst." - Git Project, 2018

The above quote implicitly states that is possible to have a delta’s base object being

another delta. This forms what is called delta chains. To be valid, every delta chain must

of course end in a non-delta base. Otherwise, none of the objects in the chain would be

reconstructable.

Delta objects come in two subtypes: ref-delta and off-delta. Their only di�erence,

as described in Git Project, 2018, resides on how they reference their base objects. The

�rst one holds the base’s 20-bytes hash. The second contains the o�set of the base object

in relation to the delta and thus, can only be used when the base and the delta are both in

the same packfile (a single repository can have multiple packfiles).

It’s important to mention as well that the packing techniques (as described in Git

Project, 2014) try to generate deltas from larger objects to smaller ones. And, since code

�les tend to grow over time, this approach will result in less deltas at the most recent

revisions (the most common deltas will be in fact ’backward-deltas’). This is good for per-

formance as users usually want to handle the most recent revisions more frequently.

Another performance feature described in Git Project, 2014 (but this time related

to memory) is that Git may create deltas against �les with same basename but residing

in di�erent directories. As it says "The rationale is essentially that �les, like Make�les,

often have very similar content no matter what directory they live in." Finally, it is also

mentioned that using the mentioned techniques and other heuristics, packfiles manage

to achieve good IO patterns, in general.

So, being so optimized, is inevitable to question: why not creating the objects in the

4.3 | OBJECT READING

19

packed format, already, instead of the loose one? The answer is: insertion in packfiles is

not fast. As the document cited in the above paragraph states, packing involves object

listing, sorting and walking with a sliding window (for delti�cation). Performing this

operations for every git add or git commit wouldn’t be viable. So, instead, objects are

usually created in loose format (which is very fast since this is only a single hashed

and compressed �le at .git/objects) and them, ocasionally, they are gathered into a

packfile. This is done automatically by auto-gc, upon certain conditions, trying to make

the repository as optimized as possible.

4.3 Object Reading

Retrieving Git objects, which are compressed, possibly stored in di�erent formats

and delti�ed, is a process that requires going to a couple of phases. Not to mention

the precautions taken to catch any possible failure that might occurs througout this

process. Therefore, the object reading machinery is quite complex, and subdivided in many

functions. But the main entry points to this machinery, are:

• repo_read_object_file()

• read_object_file()

• read_object_file_extended()

• read_object_with_reference()

• read_object()

• oid_object_info()

• oid_object_info_extended()

These are the highest level functions in the object reading code. An user of this

machinery will usually call one of them which, in turn, delegates the underlying tasks to

the respective lower level routines. One might ask why we need so many di�erent entry

points instead of a single "read_object()". Actually, this "read_object()" is in fact what

oid_object_info_extended() implements. All the other functions above call this one to

really perform the work. They exist in order to simplify the code of the object reading

API users, calling the said "back-end" function with default paramenters, implementing

addional checkings, etc. So we will focus on explaining how oid_object_info_extended()

works. It receives four parameters:

• A struct repository *, which represents the repository where the caller wants to

fetch the object from.

20

4 | THEORETICAL BACKGROUND

• A struct object_id *, the hash of the said object.

• A unsigned flags to store the combination of desired options (for example, skipping

the cache, ignoring loose objects, etc.).

• The struct object_info * out-parameter which will be �lled with the information

of the desired object.

The return value is an integer code to inform failure or success. The steps done by this

function are roughly the following:

1. Lookup object replacement map4.

2. Lookup the cached_objects list. This is an in-memory cache for objects that are not

necessarily written in disk (can be used for "fake" or temporary objects, for example).

3. Try to �nd a pack�le in the given repository which contains the given hash.

4. In case of failure to �nd pack�le, assume the hash is referencing a loose object and

try to read it. In case of success, return the read information.

5. In case of failure, try to �nd the pack�le again. The object could have been just

packed by another Git process while this process was executing the above step.

6. If it fails, it might be the case that the given repository is a partial clone5 and the

required object is missing locally. Partial clones allow users that are not interested

in the whole repository of a project to download only speci�c portions of it during

the clone operation. Later, if a missing object is required, Git will try to fetch it on

demand. So, in this case, try fetching the object and repeat from step 3. If it fails,

return with error.

7. At this point, it’s known that the object is packed and also in which pack�le it’s

stored. So try retrieving the information from it and return. Or return with error, if

it fails.

The code that performs steps 4 and 7 (i.e. the actual data retrieval from a loose or packed

object, respectively), is done by other routines called by oid_object_info_extended().

They are, respectively, loose_object_info() and packed_object_info(). We won’t show

a pseudocode for these functions, but it’s important to highlight that both need to read

from disk and perform decompression, as both loose and packed objects are stored in zlib

compressed format. For packed objects, there’s even the additional work of reconstructing

the deltas (after decompressing them as well).

4See https://git-scm.com/docs/git-replace
5https://git-scm.com/docs/partial-clone

https://git-scm.com/docs/git-replace
https://git-scm.com/docs/partial-clone

4.3 | OBJECT READING

21

The process of delta reconstruction is optimized with a LRU cache (i.e., a cache that

removes the Least Recently Used entry when it is full and a new entry needs to be added).

The motivation for this structure is that two or more di�erent deltas may share the same

base. So instead of redundanctly reading (and decompressing/reconstructing) the same

base twice, the most recently used bases are kept in-memory to be reused. (Note that, for

a base that is also a delta, the data stored represents the �nal base in this delta chain, with

the deltas applied.) The key in this cache is the base object location, in the format of a pair

(packfile P, offset O in that packfile).

The function responsible for uncompressing and delta-reconstructing objects

from a packfile is unpack_entry(), which is called by the previously mentioned

packed_object_info(). Part of unpack_entry()’s inner workings will be very important in

the Chapter 6, so its general operation is described at the Pseudocode 4.1. It might seem

odd that it removes the cache entry at phase I, instead of just picking it. But note that, the

base will be re-added at phase III (updating its position in the LRU list).

Program 4.1 Pseudo-code of function unpack-entry().

1 function unpack_entry(P, O):
2 S <− initialize empty stack of delta locations
3

4 ⊳ PHASE I: drill down to the innermost base object
5 do:
6 if (P, O) is in delta base cache:
7 DATA <− pop cached data from object at (P, O)
8 break

9 else:
10 H <− read and decompress header of object at (P, O)
11 T <− read type of object from header H
12 if T is a delta:
13 push delta location (P, O) to stack S
14 P, O <− get base location of delta at (P, O)
15 while T is a delta, repeat;
16

17 ⊳ PHASE II: uncompress the base (if didn’t retrieve it from cache)
18 If dont have DATA:
19 DATA <− read and uncompress object at (P, O)
20

21 ⊳ PHASE III: apply deltas in order
22 while S is not empty:
23 add DATA to delta base cache with (P, O) as key
24 (P, O) <− pop next delta location from stack S
25 DELTA_DATA <− read and uncompress object at (P, O)
26 DATA <− apply DELTA_DATA over DATA
27 return DATA

22

4 | THEORETICAL BACKGROUND

With the above details on how object reading works, it is intuitivelly understandable

why git-grep on object store takes so much longer than on the working tree. While the

latter just needs to read an uncompressed �le to have the data in memory, the former has

to perform a lot of operations besides I/O, such as decompression, delta-reconstruction,

handling of multiple pack�les and etc.

23

Chapter 5

Pro�ling

For a good implementation (or enhancement) of parallel code, it is crucial to understand

where the bottleneck is in order to properly direct the parallelization e�ort. In the previous

chapter, we presented the intutive assumption that object reading is one of the most time

consuming sections of git-grep in the object store. Its a convincing hypothesis, especially

after looking into how complex object reading is. But before we continue, it is important

to show how this hypothesis was validated and, furthermost, how we got to know which

subsection of object reading could be made parallel with good performance.

As seen in the previous chapter, object reading involves many smaller tasks. These

can be subdivided into two categories: CPU-bound tasks and I/O-bound tasks. On the

former falls CPU intensive operations like zlib decompression and delta reconstruction.

On the latter falls the actual �le reading. If the performance bottleneck was due to I/O-

bound tasks, then we would have been in a di�cult spot as parallel I/O is not always very

e�ective. However, if it were due to CPU Bound tasks, as it turned out to be, the chances

for threading improvement become much greater.

To evaluate where the said bottlenecks were, we used two pro�lers: gprof1 and

perf2.

To start, Git was compiled and linked with -pg -O0, to disable compiler optimizations

and make the generated binary write out the pro�le information suitable for gprof. One

might point out that it’s also important to pro�le the optimized code as the bottleneck

sections might di�er. In our case, though, they remained the same across both pro�lings.

So we will stick with the unoptimized one since it is more faithful to the actual source

�les and, therefore, easier to understand.

1https://sourceware.org/binutils/docs-2.33.1/gprof/index.html
2https://perf.wiki.kernel.org/index.php/Main_Page

https://sourceware.org/binutils/docs-2.33.1/gprof/index.html
https://perf.wiki.kernel.org/index.php/Main_Page

24

5 | PROFILING

Running the following command in chromium’s repository: git --no-pager grep

--color=never --cached --threads=1 -E ’(static|extern) (int|double) *’; and us-

ing gprof2dot3 for the vizualization we geneated the diagram in Figure 5.1. Since the

producer-consumer mechanism is only used when multithreaded, and that could a�ect

the pro�le, the experiment was also repeated with 8 threads (for that, the Patch 1.1 was

applied). The multithreaded pro�le can be seen in Figure 5.2. For a full description of the

graph’s features, please check the gprof2dot page. For this analysis, though, it’s su�cient

to consider only the percentage number in each node and edge. The number without

parenthesis in the nodes is the percentage of the total time spent in the said function

and its call tree. The number in parenthesis excludes the call tree contribution. And the

number in the edges is the percentage of the total time transfered from the callee to the

caller.

In both Figures 5.1 and 5.2 it’s visible how object reading has a big in�uence in

the elapsed time, con�rming the previous hypothesis. A special attention must be

given to oid_object_info_extented(), which, as presented in the previous chapter, is

the main entry-point for object reading. Together with its callees, this function is respon-

sible for over one third of the total execution time, in both pro�les. Another highlight

goes to unpack_entry(), the function which performs object decompressing and delta-

reconstruction, accounting for approximatelly 23% of the total execution time. In its call

tree, patch_delta() gets the �rst place in time consumption. With all this information,

targeting the CPU Bound tasks of object reading (especially delta reconstruction) seemed

very promissing for a good optimization.

What we can’t see in these pro�les, though, is the time spent inside shared libraries,

such as zlib (it’s a gprof limitation). That’s probably why we see git_inflate(), the

wrapper for zlib decompression, taking such a small section of the total execution time

in the said pro�les. And since it was also a candidate for parallelization alongside delta

reconstruction, another pro�ller had to be used to evaluate it’s potential. For that, we used

perf.

Git was recompiled with -g -O0, to append the necessary information for perf and,

again, disable compiler optimizations. Then, the same command as before was executed

but pre�xed with perf record -F 99 -g --. This generates a perf.data �le which was then

processed by perf script. To vizualize the resulting information we used FlameGraph4. The

resulting image for both single thread and 8 threads can be seen, respectively, in Figures

5.3 and 5.4. These images show us the call stack pro�le, with each rectangle representing

3https://github.com/jrfonseca/gprof2dot
4http://www.brendangregg.com/flamegraphs.html

https://github.com/jrfonseca/gprof2dot
http://www.brendangregg.com/flamegraphs.html

5 | PROFILING

25

main
96.97%
(0.00%)

cmd_main
96.97%
(0.00%)
1×

96.97%
1×

run_argv
96.97%
(0.00%)
1×

96.97%
1×

handle_builtin
96.97%
(0.00%)
1×

96.97%
1×

run_builtin
96.97%
(0.00%)
1×

96.97%
1×

cmd_grep
96.97%
(0.00%)
1×

96.97%
1×

grep_cache
96.22%
(2.26%)
1×

96.22%
1×

git_config
0.75%
(0.00%)
1×

0.75%
1×

grep_oid
93.89%
(0.00%)
304254×

93.89%
304254×

repo_config
0.75%
(0.00%)
1×

0.75%
1×

grep_source
92.09%
(0.00%)
304254×

92.09%
304254×

grep_source_init
1.62%
(0.75%)
304254×

1.62%
304254×

strbuf_release
0.75%
(0.75%)
2193242×

0.10%
304254×

grep_source_1
92.09%
(0.00%)
304254×

92.09%
304254×

oiddup
0.87%
(0.00%)
304254×

0.87%
304254×

grep_source_is_binary
73.08%
(0.00%)
304254×

73.08%
304254×

fill_textconv_grep
18.25%
(0.00%)
304254×

18.25%
304254×

should_lookahead
0.75%
(0.75%)
304254×

0.75%
304254×

grep_source_load_driver
54.88%
(0.00%)
304254×

54.88%
304254×

grep_source_load
36.45%
(0.00%)
607568×

18.20%
303314×

18.25%
304254×

userdiff_find_by_path
54.88%
(0.00%)
304254×

54.88%
304254×

grep_source_load_oid
36.45%
(0.75%)
304254×

36.45%
304254×

git_check_attr
54.88%
(0.75%)
304254×

54.88%
304254×

collect_some_attrs
54.13%
(4.51%)
304254×

54.13%
304254×

fill
38.14%
(12.03%)
304254×

38.14%
304254×

determine_macros
8.27%
(8.27%)
304254×

8.27%
304254×

prepare_attr_stack
2.46%
(1.50%)
304254×

2.46%
304254×

all_attrs_init
0.75%
(0.75%)
304254×

0.75%
304254×

path_matches
26.11%
(10.53%)
38740762×

26.11%
38740762×

0.10%
304254×

read_attr
0.76%
(0.00%)
26317×

0.76%
26316×

match_pathname
11.79%
(5.26%)

24989828×

11.79%
24989828×

match_basename
3.79%
(1.50%)

13750934×

3.79%
13750934×

repo_read_object_file
35.70%
(0.00%)
304254×

35.70%
304254×

read_object_file_extended
35.70%
(0.75%)
304254×

35.70%
304254×

read_object
34.24%
(0.00%)
304254×

34.24%
304254×

lookup_replace_object
0.71%
(0.00%)
304254×

0.71%
304254×

oid_object_info_extended
34.24%
(0.00%)
304254×

34.24%
304254×

do_lookup_replace_object
0.71%
(0.00%)
304254×

0.71%
304254×

packed_object_info
24.46%
(0.00%)
304254×

24.46%
304254×

find_pack_entry
9.77%
(1.50%)
304254×

9.77%
304254×

cache_or_unpack_entry
23.00%
(0.00%)
304254×

23.00%
304254×

packed_to_object_type
0.75%
(0.75%)
304254×

0.75%
304254×

in_delta_base_cache
0.71%
(0.00%)
304254×

0.71%
304254×

fill_pack_entry
8.27%
(0.00%)
304254×

8.27%
304254×

fspathncmp
7.52%
(7.52%)
50111282×

6.23%
41495388×

fnmatch_icase_mem
1.30%
(0.75%)
792231×

0.30%
183608×

1.29%
8615894×

0.99%
608623×

unpack_entry
22.27%
(0.00%)
276896×

22.27%
276896×

get_delta_base_cache_entry
2.63%
(0.00%)
1122223×

0.71%
304254×

0.71%
304254×

1.20%
513715×

patch_delta
12.87%
(12.03%)
236819×

12.87%
236819×

unpack_compressed_entry
3.48%
(0.00%)
445795×

3.48%
445795×

unpack_object_header
2.55%
(0.00%)
445795×

2.55%
445795×

add_delta_base_cache
1.82%
(0.75%)
236819×

1.82%
236819×

detach_delta_base_cache_entry
0.64%
(0.00%)
228798×

0.19%
67920×

hashmap_get
3.34%
(0.75%)
1426809×

2.63%
1122220×

get_delta_hdr_size
0.75%
(0.75%)
473638×

0.75%
473638×

git_inflate
1.00%
(0.00%)
445796×

1.00%
445796×

git_inflate_end
1.00%
(0.00%)
445795×

1.00%
445795×

git_inflate_init
1.00%
(0.00%)
445795×

1.00%
445795×

use_pack
0.75%
(0.00%)
1128410×

0.30%
445796×

0.30%
445795×

unpack_object_header_buffer
2.26%
(2.26%)
445795×

2.26%
445795×

hashmap_add
0.53%
(0.00%)
236841×

0.53%
236819×

hashmap_remove
0.64%
(0.00%)
228798×

0.64%
228798×

0.54%
1584462×

find_pack_entry_one
8.27%
(0.00%)
304254×

8.27%
304254×

nth_packed_object_offset
6.77%
(6.77%)
304254×

6.77%
304254×

bsearch_pack
1.50%
(0.00%)
304254×

1.50%
304254×

bsearch_hash
1.50%
(0.75%)
304254×

1.50%
304254×

zlib_post_call
2.26%
(2.26%)
1337386×

0.75%
445796×

zlib_pre_call
0.75%
(0.75%)
1337386×

0.25%
445796×

0.75%
445795×

0.25%
445795×

0.75%
445795×

0.25%
445795×

in_window
0.75%
(0.75%)
1133200×

0.75%
1133200×

find_entry_ptr
3.01%
(1.50%)
1655607×

2.59%
1426809×

entry_equals
1.50%
(1.50%)
835738×

1.50%
835738×

read_attr_from_index
0.75%
(0.00%)
26303×

0.75%
26303×

rehash
0.75%
(0.75%)
10×

0.53%
7×

oidcpy
0.75%
(0.75%)
304254×

0.75%
304254×

hashcmp
0.75%
(0.75%)
4458217×

0.75%
4458217×

read_blob_data_from_index
0.75%
(0.00%)
26303×

0.75%
26303×

configset_iter
0.75%
(0.00%)
1×

0.75%
1×

grep_cmd_config
0.75%
(0.00%)
14×

0.75%
14×

memory_limit_check
0.75%
(0.75%)
1953501×

index_name_pos
0.75%
(0.00%)
26303×

index_name_stage_pos
0.75%
(0.75%)
26303×

0.75%
26303×

0.75%
26303×

grep_config
0.75%
(0.00%)
14×

0.75%
14×

userdiff_config
0.75%
(0.75%)
14×

0.75%
14×

fspathcmp
0.75%
(0.75%)

warn_on_inaccessible
0.75%
(0.75%)

would_convert_to_git
0.75%
(0.75%)

zerr_to_string
0.75%
(0.75%)

oidmap_get
0.71%
(0.00%)
304254×

0.71%
304254×

hashmap_get_from_hash
0.71%
(0.00%)
304254×

0.71%
304254×

0.71%
304254×

0.42%
228798×

0.23%
3×

Figure 5.1: Vizualization of gprof’s pro�le for cached git-grep in chromium’s repository with a
single thread.

26

5 | PROFILING

run
65.17%
(0.00%)

grep_source
63.27%
(0.00%)
246740×

63.27%
246740×

work_done
1.20%
(0.75%)
197425×

1.20%
197425×

get_work
0.58%
(0.50%)
244923×

0.58%
244923×

grep_source_1
63.27%
(1.00%)
244777×

63.27%
244777×

grep_source_is_binary
42.99%
(0.25%)
243499×

42.99%
243499×

fill_textconv_grep
17.79%
(0.00%)
227163×

17.79%
227163×

look_ahead
1.00%
(0.50%)
235449×

1.00%
235449×

grep_source_load_driver
47.95%
(0.00%)
512868×

22.86%
244574×

grep_source_load
37.17%
(0.50%)
468638×

19.38%
244303×

17.79%
224335×

userdiff_find_by_path
46.45%
(0.00%)
268200×

46.45%
268200×

userdiff_find_by_name
1.25%
(0.00%)
281953×

1.25%
281953×

git_check_attr
46.45%
(0.25%)
269377×

46.45%
269377×

userdiff_find_by_namelen
1.25%
(1.25%)
282173×

1.25%
282173×

collect_some_attrs
46.20%
(3.99%)
272346×

46.20%
272346×

fill
33.35%
(8.98%)
278307×

33.35%
278307×

determine_macros
5.74%
(5.74%)
270726×

5.74%
270726×

prepare_attr_stack
2.38%
(1.00%)
274995×

2.38%
274995×

all_attrs_init
0.75%
(0.50%)
271149×

0.75%
271149×

path_matches
24.12%
(8.98%)

35830531×

24.12%
35830531×

strbuf_addstr
0.77%
(0.25%)
273114×

0.77%
273114×

read_attr
0.51%
(0.00%)
24039×

0.51%
24038×

grep_source_load_oid
36.67%
(1.25%)
245518×

36.67%
245518×

repo_read_object_file
34.92%
(0.00%)
264130×

34.92%
264130×

read_object_file_extended
34.92%
(0.00%)
240292×

34.92%
240292×

read_object
33.68%
(0.00%)
250976×

33.68%
250976×

lookup_replace_object
1.24%
(0.75%)
247890×

1.24%
247890×

oid_object_info_extended
33.68%
(0.75%)
226003×

33.68%
226003×

match_pathname
10.95%
(7.23%)

23057675×

10.95%
23057675×

match_basename
4.20%
(1.50%)

12763873×

4.20%
12763873×

packed_object_info
25.31%
(0.50%)
236369×

25.31%
236369×

find_pack_entry
7.12%
(0.00%)
239881×

7.12%
239881×

cache_or_unpack_entry
24.32%
(0.25%)
225712×

24.32%
225712×

fill_pack_entry
6.23%
(0.50%)
230895×

6.23%
230895×

prepare_packed_git
0.75%
(0.50%)
241930×

0.75%
241930×

main
29.84%
(0.00%)

cmd_main
29.84%
(0.00%)
1×

29.84%
1×

run_argv
29.84%
(0.00%)
1×

29.84%
1×

handle_builtin
29.84%
(0.00%)
1×

29.84%
1×

run_builtin
29.84%
(0.00%)
1×

29.84%
1×

cmd_grep
29.84%
(0.00%)
1×

29.84%
1×

grep_cache
29.59%
(1.00%)
1×

29.59%
1×

grep_oid
27.92%
(0.00%)
279043×

27.92%
279043×

strbuf_addstr
1.08%
(0.00%)
560167×

0.54%
280436×

0.54%
279731×

add_work
26.05%
(0.75%)
273436×

26.05%
273436×

grep_source_init
1.30%
(0.50%)
277313×

1.30%
277313×

strbuf_add
1.65%
(0.75%)
858503×

1.08%
562344×

25.08%
268294×

unpack_entry
23.53%
(2.24%)
218162×

23.53%
218162×

get_delta_base_cache_entry
1.81%
(0.00%)
888938×

0.49%
240720×

fspathncmp
3.74%
(3.74%)

46661421×

3.09%
38591483×

fnmatch_icase_mem
2.68%
(0.50%)
735314×

0.62%
170814×

0.65%
8069938×

2.05%
564500×

0.82%
404388×

patch_delta
8.97%
(8.48%)
181567×

8.97%
181567×

unpack_compressed_entry
5.03%
(0.75%)
352323×

5.03%
352323×

unpack_object_header
3.55%
(0.00%)
352800×

3.55%
352800×

add_delta_base_cache
2.06%
(1.00%)
196728×

2.06%
196728×

detach_delta_base_cache_entry
0.77%
(0.00%)
193535×

0.18%
46579×

hashmap_get
2.30%
(0.00%)
1119808×

1.81%
879281×

xmallocz
0.54%
(0.25%)
195874×

0.49%
177230×

use_pack
2.00%
(1.50%)
866526×

0.77%
336168×

git_inflate_init
1.00%
(0.25%)
368295×

1.00%
368295×

xmallocz_gently
1.02%
(0.50%)
343720×

1.02%
343720×

git_inflate
0.75%
(0.00%)
341890×

0.75%
341890×

git_inflate_end
0.74%
(0.00%)
356083×

0.74%
356083×

0.81%
351155×

unpack_object_header_buffer
2.74%
(2.74%)
346093×

2.74%
346093×

release_delta_base_cache
0.58%
(0.00%)
146244×

0.58%
146244×

hashmap_remove
0.66%
(0.25%)
194290×

0.66%
194290×

wildmatch
2.00%
(0.50%)
731930×

2.00%
731930×

do_xmallocz
0.81%
(0.50%)
560163×

0.29%
201951×

find_pack_entry_one
5.74%
(0.00%)
234843×

5.74%
234843×

nth_packed_object_offset
2.99%
(2.99%)
236396×

2.99%
236396×

bsearch_pack
2.49%
(0.25%)
241896×

2.49%
241896×

bsearch_hash
2.24%
(0.75%)
228527×

2.24%
228527×

zlib_pre_call
1.50%
(1.25%)
1031472×

0.50%
342018×

zlib_post_call
0.75%
(0.75%)
1139963×

0.25%
382384×

0.52%
358212×

0.50%
346660×

0.25%
383963×

0.50%
342794×

0.25%
373616×

find_entry_ptr
2.70%
(1.25%)
1309827×

entry_equals
1.25%
(1.00%)
681787×

1.25%
681787×

dowild
1.50%
(1.50%)
739869×

1.50%
737385×

hashcmp
1.25%
(1.25%)
3486214×

1.25%
3486214×

2.30%
1114249×

0.52%
271933×

0.58%
146956×

2484×

strbuf_grow
0.68%
(0.25%)
877026×

0.66%
859193×

oidmap_free
1.00%
(1.00%)

do_xmalloc
0.56%
(0.25%)
1043018×

0.31%
579383×

0.40%
195578×

fspathcmp
0.75%
(0.75%)

Figure 5.2: Vizualization of gprof’s pro�le for cached git-grep in chromium’s repository with 8
threads.

5 | PROFILING

27

a stack frame. The larger the rectangle, the more time the process spent on it. The y-axis

is ordered in caller-callee fashion (from bottom to top) and the x-axis is alphabetically

ordered. We also colored the �gures to highlight some sets of functions of interest.

Figure 5.3: Vizualization of perf’s pro�le for cached git-grep in chromium’s repository with a
single thread.

Figure 5.4: Vizualization of perf’s pro�le for cached git-grep in chromium’s repository with 8
threads.

Figures 5.3 and 5.4 show that an impressive percentage of time is spent in decompressing

routines. In both of them, this set of operations alone accounted for more than one third of

the program’s total execution time. Additionally, although zlib decompression is currently

being performed serialized across git-grep’s threads, this operation is thread-safe (see

Roelofs et al., 2010). And the work in di�erent decompressing streams is, in theory,

28

5 | PROFILING

pretty paralelizable. These characteristics made decompression one of the most interesting

candidates for parallelism.

Another interesting point to note in Figure 5.4 is the considerably long time spent in

locking functions. One reason for that could be lock contentions, which should also be

reduced if we allow more work to be performed in parallel.

29

Chapter 6

Development

As already discussed, threads were disabled in git-grep for the object store case.

However, the threaded implementation wasn’t removed from the code. So the develop-

ment idea for this project was to, �rst, improve the object reading functions so that they

could safelly and e�ciently be performed in parallel. Then, take advantage of the already

implemented threads machinery in git-grep, and allow it to work threaded in object

store again, but this time, with a hopefully better performance. In this process, we would

remove the lock used by git-grep to call object reading functions as they would then be

already thread-safe. Concerning the locks, git-grep used to have three mutexes in its code:

grep_attr_mutex to protect the thread-unsafe userdi� API (more on this API later in this

chapter); grep_read_mutex to protect object reading operations and other function calls

that would otherwise be in race condition with object reading; and grep_mutex to control

the operations on the producer-consumer queue. The only one we planned to remove

during this process is the grep_read_mutex.

6.1 First Approach: Protect Only Global States

The git-grep pro�les from Chapter 5 showed that, in theory, a parallel access to object

reading could indeed bring some good speedup. Additionally, delta reconstruction and

zlib decompression seemed to be the sections that would bene�t the most from this (the

latter being the most time consuming and thus, the most promissing). Because of that, we

choosed to target zlib decompression. One might wonder, however, why targeting one

segment for parallelism? Why don’t remove the grep_read_mutex, protect the operations

on global variables that were now left unprotected and let everything else run in parallel?

In fact, this was also our �rst idea, as described in the initial GSoC proposal. This design,

however, turned out to be very hard. Since object reading is pretty complex, locating and

30

6 | DEVELOPMENT

protecting each and every global state is not an easy task (because they might be used in

di�erent levels of abstraction). Also, this approach may not seem as such a big change in

code, but in fact it is. And thus, it is probably much safer if done in incremental stages

over some period, making sure the expected behavior is preserved.

But why could these changes be so dangerous? By allowing threads to work in parallel

in some segments, we are also opening holes in a big critical section that used to wrap

the whole object reading execution. Even if we could locate and protect all reading and

writting operations on global variables, it possibly wouldn’t be enough to avoid race

conditions. Just by splitting this big critical section in two, we risk having global resources

being changed in between a thread’s execution of the two halves. And if the second half

expects a certain resource, not guarding itself against the possible change, this might lead

to a failure. In other words, the splitting of the critical section would break a previously

guaranteed invariant that ensures correctness.

To illustrate this problem, take a look at the diagrams in Figure 6.1, which represent

the work done by the git-grep threads over time. The one in the left corresponds to the

original code, with totally sequential object reading. In the right side, though, we pretended

to have added a single parallel region inside the object reading code (creating one hole in

the critical section). Now, a global resource that was, for example, prepared by the section

A1 to be used by A2, might not be available when A2 executes, because B1 might have

changed it in the meantime. If we fail to �nd this kind of race and protect the a�ected

segments while introducing the parallel regions, we might also add a non-deterministic

bug. And sometimes requiring speci�c circumstances to happen, this kind of bug could be

quite hard to detect. This is the reason why, even though we could theoretically achieve a

greater speedup with more parallel regions, we decided to take a simpli�ed path focusing

on a single region. Of course this kind of problem can still ocour as we cannot avoid

splitting the critical section somehow if we want to perform any segment in parallel.

However, by choosing a single region to tackle for now, we can focus on a smaller change

set and mitigate the risks of introducing such bugs. As previously said, future incremental

improvements can then be made to add more parallelism.

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

31

A parallel
section in

object
reading

A

B

C

Object
Reading

Other
thread
work

Original Threads Flow Flow w/ one added parallel region

Time flow in
a git-grep
execution

A1

A2

Waiting
for mutex

B2

B1

C2

C1

Threads Threads

... ...

Figure 6.1: Diagrams representing the git-grep threads �ow. The left side corresponds to the
original code. The right side corresponds to a modi�cation adding one parallel region inside object
reading. Note how, in the right, B1 might execute between A1 and A2, possibly changing global
variables and breaking invariants that were previously ensured in the original code.

6.2 Next Approach: Parallel zlib Decompression

The next approach was to select a single section to execute in parallel. By the results

from Chapter 5, zlib decompression was the obvious candidate. So we would continue

protecting the whole object reading machinery but leaving zlib decompression unprotected,

to run in parallel (and taking care to avoid the possible races described in Section 6.1). To

do so, we would replace git-grep’s grep_read_mutex with an obj_read_mutex inside object

reading, that would be released when performing decompression. One of the extra bene�ts

of adding this lock is that the parallel access to object reading could then be used by other

commands as well, without the need of using external locks. More explicitly, this mutex

would be:

1. Acquired at the beginning of read_object_file_extended() (which, then, seemed

to be the topmost object reading function in git-grep’s calls);

2. Released before performing decompression, i.e. a call to git_inflate(), anywhere

in read_object_file_extended()’s call tree (to do it in parallel);

3. Reacquired right after; and

32

6 | DEVELOPMENT

4. Finally released again in the end.

With adjustements, this general idea was what ended up being implemented in the

end. Being so time consuming, parallelizing only decompression already brings a great

speedup while promoting a somehow controlled change set. It’s important to mention that

adding the said mutex could slow down the sequential code that uses the object reading

API (because of the locking/unlocking overhead). So instead of just blindly adding the

lock, we provided some extra functions for the API users to enable or disable the internal

lock usage as needed.

One of the �rst challenges of replacing the grep_read_mutex was the fact that it was not

only protecting object reading operations but also other operations that could be in data

race with them. So removing this lock and protecting just the former wouldn’t be enough.

These protected non-object-reading operations were mainly executed by the code related

to the options --recurse-submodules and --textconv. The former is used to propagate the

search to the submodules1 of the repository. And the latter to use the text conversion2

options for the paths with the respective attribute in the .gitattributes �le. Once more,

to honor the idea of making small incremental changes, we decided not to deal with this

problem in the �rst implementation, leaving it for a second version (or patches on top of

the �rst version). Of course we also couldn’t just ignore the problem and let git-grep fail.

So we disabled threads whenever any of these two options were given for an object store

grepping, making the added improvements only a�ect the code outside these options, for

now.

6.2.1 Race Condition at Delta Base Cache

The early tests for this �rst version, using the gentoo repository as data, showed a

promissing time reduction. But when trying to test with larger repositories such as linux

or chromium the code failed with a Segmentation Fault error. Using GDB3 we found out that

the error came from an invalid access in the delta base cache. Although this global cache

was protected by the added object reading lock, this could be the result of a race condition

in the format illustrated in Figure 6.1.

To understand the problem, we have to understand �rst how this LRU cache is imple-

mented. It must provide the basic operations of insertion, retrieval and removal. Besides,

it must keep track of which entries were least recently used, so that they can be removed

when more space is needed. To satisfy these requirements and keep a good time complexity,

1https://git-scm.com/book/en/v2/Git-Tools-Submodules
2https://git.wiki.kernel.org/index.php/Textconv
3https://www.gnu.org/so�ware/gdb/

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git.wiki.kernel.org/index.php/Textconv
https://www.gnu.org/software/gdb/

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

33

the cache is implemented with the conjuntion of a hashmap and a doubly linked list. The

former is used to fastly get entries based on a key, which is a (pack�le, o�set) pair, as

described in the Chapter 4. And the latter is used to keep track of the LRU order: new

entries are always added in the tail; and everytime an entry is used, the API expects its

user to remove and re-insert the entry to update the list order.

In Git, both the hashmap and the linked list are implemented as intrusive data structures.

This means that the data structure and its payload are constructed in the same composition.

In the list, for example, "links are embedded in the structure that’s being linked" (Yerburgh,

2019). Some advantages of this method, as described in the just quoted blogpost, are less

memory allocations and caching thrashing. With that in mind, the de�nition of a delta

base cache entry ends up as being something like this:

Program 6.1 Simpli�ed structure of a delta base cache entry.

1 struct delta_base_cache_entry {

2 void *data;

3 struct delta_base_cache_key key;

4 struct hashmap_entry h;

5 struct list_head l;

6 };

7

8 struct delta_base_cache_key {

9 struct packed_git *packfile;

10 off_t offset;

11 };

12

13 struct list_head {

14 struct list_head *next;

15 struct list_head *prev;

16 };

17

18 /* Hashmap entries are stored in a 'struct hashmap_entry *' array where

19 the index is given in function of their hashes. */

20 struct hashmap_entry {

21 unsigned int hash;

22 /* entries with same hash are stored in a linked list rooted in

23 the array position they would fall in. */

24 struct hashmap_entry *next;

25 };

Note that, with the above de�niton, we only handle a struct list_head when traversing

the list. But it’s, in fact, possible to retrieve the associated struct delta_base_cache_entry

34

6 | DEVELOPMENT

making use of the container_of() macro. This very handy operation, gives us the address

of the struct from one of its �elds (see Yerburgh, 2019 for more info). The hashmap usage

might seem a little counterintuitive at �rst, but it is, in fact, quite similar: to retrieve an

entry, we initialize and pass a struct hashmap_entry and a struct delta_base_cache_key

to the hashmap retrieval function. The former is used to tell the hash of the entry we

are looking for and the latter to disambiguate between entries with the same hash (this

implementation also allows the insertion of two entries with the same hash and key, in

which case just the �rst found is returned). The function returns a struct hashmap_ent

which can, then, be passed to container_of() to get the container cache entry. Note that

the given struct hashmap_entry and struct delta_base_cache_key might not be the ones

that were declared inside the struct delta_base_cache_entry we are looking for! In fact,

in the common case it is not, because if it were, we wouldn’t need to fetch the entry, at

�rst place.

With the basic knowledge of how the cache is implemented, let’s get back to the race

condition problem. Using Valgrind4 with memcheck to debug our previous Segmentation

Fault, we discovered that a thread was trying to access the struct hashmap_key of an

already free’d struct delta_base_cache_entry. But how could that be possible? Firstly, we

have to remember the code from the unpack_entry() function (described at the Pseudocode

4.1). This function is present in the object reading call chains, so a thread would have the

obj_read_mutex once it get to this code. However, every uncompress operation on this

function would be performed in parallel (by releasing the lock right before and re-acquiring

right after). This way, we opened some holes in the critical section in which this function

was inserted. Thus, it is no longer guaranteed that the function will run from top to bottom

uninterruptedly. Instead, it might be called again by other thread before the previously

started execution ends. If this function is not reentrant, we might have just introduced an

error. And in fact, that’s exactly what happened. Allowing the above situation to happen,

we also allowed for the same key to be accidentally added twice in the cache, through a

race condition. This can happen, for example, in this case:

1. Thread A is performing the decompression of a base O (which is not yet in the cache)

at PHASE II. Thread B is simulteneously trying to unpack O, but just starting at

PHASE I.

2. Since O is not yet in the cache, B will go to PHASE II to also perform the decom-

pression.

3. When they �nish decompressing, one of them will get the object reading mutex and

go to PHASE III while the other waits. Let’s say A got the mutex �rst.

4http://valgrind.org/

http://valgrind.org/

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

35

4. Thread A will add O to the cache, go throught the rest of PHASE III and return.

5. Thread B gets the mutex, also add O to the cache (because it thinks O wasn’t there

yet) and returns.

Although the hashmap implementation allows the insertion of two entries with the

same key, something odd will happen in this current situation. If we try to add another entry

to the cache and there is no space for it, the code will traverse the LRU list removing entries

until there is su�cient space. The removal action includes three operations: remove the

respective struct hashmap_ent from the hashmap, remove the respective struct list_head

from the list and, �nally, free the container struct delta_base_cache_entry. To remove

the list entry, we just have to redirect the pointers from the prev and next nodes. But

to remove the hashmap entry is a little more complex. Just like the insertion operation

previously explained, for removal we also have to pass the struct delta_base_cache_key

and struct hashmap_ent. This time, though, we don’t need to initialize new instances, we

just give the ones from the struct delta_base_cache_entry we have (the one we got from

the container_of() call with a struct list_head). The hashmap removal function will

then go through the same procedure of �nding a stored hashmap_ent with the same hash

of the hashmap_ent we gave and, possibly, disambiguating with the given key. And here is

where our problem resides: having two struct hashmap_ent’s associated with two struct

delta_base_cache_key that contains the same value makes it possible to remove the wrong

one. But even worst, we end up keeping the one we did wanted to remove. And since the

container struct of the left entry is free’d, a later fetch in the hashmap might try to read

an address in a free’d memory section, leading to the Segmentation Fault.

Fortunately, although the process required to locate and understand the error was

quite complicated, the solution was really simple. We just had to check if an entry was

already in the cache before insertion, and skip redundantly inserting it again if so. At this

point we had git-grep executing with parallel decompression, good threaded speedup

and aparently no race conditions. So the �rst version of the patch set was sent for review.

It was composed of:

• [1/4]: object-store: add lock to read_object_�le_extended()

https://public-inbox.org/git/052de4c139bf4962182e6cb8f4aa315aa6130124.1565468806.git.matheus.

bernardino@usp.br/

• [2/4]: grep: allow locks to be enabled individually

https://public-inbox.org/git/235de7de2874bd089b106be75121e1616308ed55.1565468806.git.

matheus.bernardino@usp.br/

• [3/4]: grep: disable grep_read_mutex when possible

https://public-inbox.org/git/052de4c139bf4962182e6cb8f4aa315aa6130124.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/052de4c139bf4962182e6cb8f4aa315aa6130124.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/235de7de2874bd089b106be75121e1616308ed55.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/235de7de2874bd089b106be75121e1616308ed55.1565468806.git.matheus.bernardino@usp.br/

36

6 | DEVELOPMENT

https://public-inbox.org/git/d2e3f4eac24d26210f8962ebd82fd24a99c91fdf.1565468806.git.matheus.

bernardino@usp.br/

• [4/4]: grep: re-enable threads in some non-worktree cases

https://public-inbox.org/git/8c26abe9156e069ad4d19e9f0ce131cd1453f030.1565468806.git.matheus.

bernardino@usp.br/

This series’ cover letter can be seen at: https://public-inbox.org/git/cover.1565468806.

git.matheus.bernardino@usp.br/.

6.2.2 Dealing with --textconv and --recurse-submodules

With the �rst version working, the next step was to take care of the code related to

the --textconv and --recurse-submodules options. As previously mentioned, we disabled

threads in the object store git-grep whenever any of these two options were used, because

without grep_read_mutex (that was replaced for the internal obj_read_mutex) the code

related with those options would be in race conditions with object reading. For a second

version, though, it would be nice if git-grep could also safelly perform threaded with

them and take advantage of parallel decompression. To do that, we �rst tried to follow

the call chains originated at the functions related to these options to �nd and protect the

places that operated on global states also read/modi�ed by object reading.

One of the �rst things we noticed was that, considering the submodules code,

read_object_file_extended() wasn’t the topmost object reading call in git-grep, as we

previously expected. So we would have to move the obj_read_mutex down in the call chain

in order to have all calls protected. As described in Section 4.3 oid_object_info_extended()

is the common back-end for all main object reading entry points (besides being one itself).

So it would make sence to move the obj_read_mutex down to this function. And if the

other entry points were already thread-safe except by their calls to this one, using the lock

at it would make all of them thread-safe.

This hypothesis would be correct if it weren’t for two small sections in

read_object_file_extended() that would become thread-unsafe if removing the

mutex from it. Fortunatelly, we could just keep using the mutex in this function, but now

leaving the segment that would lead to oid_object_info_extended() out of it (because

this function would already lock the said mutex internally, to protect its code). That

is almost what we did. For one of those two sections, we could use a better approach:

it was not thread-safe because of a call to lookup_replace_object() that, in turn, calls

the lazy initializer prepare_replace_object(). Both of these functions were part of the

replace-object.h API. And inspecting the code, we found out that it would be pretty

https://public-inbox.org/git/d2e3f4eac24d26210f8962ebd82fd24a99c91fdf.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d2e3f4eac24d26210f8962ebd82fd24a99c91fdf.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/8c26abe9156e069ad4d19e9f0ce131cd1453f030.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/8c26abe9156e069ad4d19e9f0ce131cd1453f030.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1565468806.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1565468806.git.matheus.bernardino@usp.br/

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

37

simple to make this API thread-safe with a single extra mutex. This was great because we

were reducing the critical section taken care by the obj_read_mutex and allowing more

work to be done in parallel. With these changes done, all the previously mentioned object

reading entry points could now be called in threaded code.

We were making good progress with the manual call chain analysis, but it was a slow

process. So seeking a faster method, we tried a more empirical approach. We crafted

an arti�cial repository with two reasonably sized submodules and forced many text

conversions, marking the cat command as the text conversion tool for every C �le. The

idea was that running git-grep on this repo with the above options we could hopefully

see and correct the possible race conditions. Then we would repeat the process until no

more race conditions were visible. And to detect them, we once more used Valgrind, but

this time with other tools: Helgrind and DRD. Unfortunatelly, though, Valgrind makes the

program execution very slow. So ThreadSanitizer was also used, by compilling Git with

-fsanitize=thread.

With this process, we got to a version where both options could be used with

threads and neither Valgrind nor ThreadSanitizer would accuse race conditions. But

unfortunatelly, --textconv would run pretty slow. Besides, we realized this empirical

process wouldn’t be safe enough to use in production code. Just because we couldn’t

spot race conditions with these tools, it didn’t mean we were really free of them. So

we got back to manually looking the call chains. But this time, we focused on the code

related to a single option at a time (once again, striving simple small improvements),

starting with the --recurse-submodules. This was easier as the code was con�ned in the

grep_submodules() function from builtin/grep.c. The calls previously protected by the

grep_read_mutex in this function were: is_submodule_active(), repo_submodule_init(),

repo_read_gitmodules(), and add_to_alternates_memory(). So, in order to keep the same

behavior, we just had to protect the code, somehow, against concurrent calls of any of

these functions and also against concurrent calls of these functions and object reading

ones. But to do so, we would have to understand why they could con�ict with object

reading. That’s when we came across this commentary in grep_submodule():

/*

* NEEDSWORK: submodules functions need to be protected because they

* access the object store via config_from_gitmodules(): the latter

* uses get_oid() which, for now, relies on the global the_repository

* object.

*/

Unfortunatelly, though, it seemed to be a little outdated, since the said func-

38

6 | DEVELOPMENT

tion no longer used get_oid(). And inspecting the code we saw that it now called

add_to_alternates_memory(), which adds the submodule’s object directories to the

in-memory alternates list. Basically, this is a list of additional directories from which Git

should "borrow" objects if they are not found in the main repository being processed

(represented by the global struct repository *the_repository variable). There is a

persistent on-disk version of the list, and a non-persitent in-memory version. In either

case, the entries are loaded in memory to a linked list at the_repository->objects->odb.

Because this list is global and it might be used by object reading functions, the concurent

call to add_to_alternates_memory(), which writes to the list, could cause data races.

Additionally, there was another explict call to this function in grep_submodules() with

this commentary:

/*

* NEEDSWORK: This adds the submodule's object directory to the list of

* alternates for the single in-memory object store. This has some bad

* consequences for memory (processed objects will never be freed) and

* performance (this increases the number of pack files git has to pay

* attention to, to the sum of the number of pack files in all the

* repositories processed so far). This can be removed once the object

* store is no longer global and instead is a member of the repository

* object.

*/

Removing these two uses of add_to_alternates_memory() would help reducing the

necessary critical section in grep_submodules besides apparently improving performance

and memory usage. We tried this idea and, once more, made good progress, but there were

some complications. The worker threads were always working in the_repository, but they

could �nd the submodules’ objects exactly because they were added to the_repository’s in-

memory alternates list. If we were to remove the second add_to_alternates_memory() call,

we would have to pass on the struct repository of the submodules to the worker threads

and adjust their code to use it instead of the_repository. It might seem simple at �rst,

since many functions called by the threads already take a struct repository parameter.

But there’re also many functions which don’t, and just use the global the_repository

internally, so we would have to make them capable of working on arbitrary repositories,

�rst.

Besides, we would have to �nd another way of handling the repo_clear() call for

each submodule. This function is responsible for freeing the associated resources of a

given struct repository and it’s currently being called by grep_submodules() right before

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

39

returning. It can do so because the submodules’ object directories were already added to

the global alternates list at that point, so the submodule struct is no longer needed. But

once we stop adding them to this list and start passing the subrepo reference on, we would

have to rethink where to perform the cleanup. Probably we would have to implement

a task counter mechanism to know when all tasks in a submodule were completed to

safelly free it. These complications made us consider that the required changes could,

potentially, became too complex for a single patch set. So we decided it would be better to

try this improvement of removing the add_to_alternates_memory() calls in another future

patch set, and try to solve our current problem on this one through simpler paths. Also, as

we later found out, the submodule functions also call object reading functions internally.

So the above changes still wouldn’t be enought to make git-grep --recurse-submodules

--cached bene�t from parallel decompression without race conditions.

That’s when the main idea for the version 2 of the patch set came out. To recap,

the problem we were facing was as follows: grep_read_mutex used to protect two sets of

operations: object reading calls and other function calls that could con�ict with object

reading. We replaced grep_read_mutex by the internal obj_read_mutex, but it only protected

the �rst set. One possible solution to maintain the previous behavior would be to expose

this mutex externally, and use it to protect the second set, as well. But these two sets were

in di�erent abstraction layers, and the second set even contained calls to functions from

the �rst. So how could we protect them both with the same lock, without getting relocking

errors? Searching the threads API, we found the recursive mutex implementation. The

speci�cation says:

"A thread can relock a recursive mutex without �rst unlocking it. The relocking

deadlock which can occur with normal mutexes cannot occur with this type

of mutex." - IEEE and The Open Group, 2018

This is exactly what we needed. So we turned obj_read_mutex into a recursive lock

and created a public API to lock and unlock it. The idea of this API was to expose the lock

externally to be used to protect places that cannot execute concurently with the object

reading machinery. The API then guarantees mutual exclusion between this machinery

and the code being protected. These lock and unlock functions were used to wrap the code

related to --recurse-submodules and --textconv.

It’s important to highlight that the usage of the recursive mutex comes with a cost. The

speci�cation says that "multiple locks of a recursive mutex require the same number of

unlocks to release the mutex before another thread can acquire the mutex." (IEEE and The

Open Group, 2018) In our case, this means that, when the lock is used externally to protect

sections that call object reading functions internally, those won’t run decompression in

40

6 | DEVELOPMENT

parallel. This happens because, during decompression, the thread would still be holding

the mutex with a lock counter of at least one. However, expecting that the areas we

would use this mutex outside object reading wouldn’t be many (nor much time consuming

ones), it would still be worthy to use this method. It also solved another problem we

didn’t previously noted when implementing the version 1 of this patch set: the call graphs

originated at read_object_file_extended() contain recursive calls to this function. So we

already had the risk of relocking problems. (These recursive calls were found using a call

graph tool which will be mentioned in Subsection 6.2.3.)

6.2.3 Analysing Call Graphs

At this point, it seemed we were very close (if not already at the point) of having thread

support for both --recurse-submodules and --textconv with good performance and no

race conditions. We did wanted, however, to make sure all code was safelly protected

before re-enabling threads in all git-grep cases. But manual analysis was getting too

laborious. So we decided to try some tools to generate the code call graphs for us, so that

we could later �lter out the paths we know to be protected and look for unprotected ones

left behind. We tried cally5, GNU c�ow6 and even writting a custom tool using GDB in

the back, called callpath7. But none of them were able to give the desired output. They

either showed only paths of an speci�c execution; or struggled with compile-time macros;

or couldn’t handle multiple valid functions with the same name (in di�erent �les). This

problem caught the attention of Giuliano Belinassi, a graduate student at the University of

São Paulo and GCC contributor. Seeking to help, he wrote a patch that made GCC dump

the call graph for the program being compiled, during the Link Time Optimization pass

(see Annex A). His implementation overcomed all of the previous problems we had with

other tools.

Compilling Git with the patched GCC, would generate a �le containing the call graph in

dot format8. Then we wrote a python script to read the �le and �lter only the paths from a

given set of functions to another. There was also an option to exclude paths going through

certain nodes. With the �ltered output, we tried to �nd paths departing from cmd_grep()

(the function responsible for the git-grep command) and run() (the start routine for the

worker threads) and leading to any of the thread-unsafe functions we knew to be present

in object reading’s call chains. For example, parse_object(). The generated call graphs

were huge. But incrementally eliminating paths we knew to be thread-safe (either because

5https://github.com/chaudron/cally
6https://www.gnu.org/so�ware/cflow/
7https://github.com/matheustavares/callpath
8https://www.graphviz.org/doc/info/lang.html

https://github.com/chaudron/cally
https://www.gnu.org/software/cflow/
https://github.com/matheustavares/callpath
https://www.graphviz.org/doc/info/lang.html

6.2 | NEXT APPROACH: PARALLEL ZLIB DECOMPRESSION

41

they were executed before thread spawning or because they were protected by locks), we

were left with much smaller subgraphs. These would then indicate the paths that were

unprotected and, thus, racy. This technique turned out to be very helpful in the process of

ensuring that we had all call paths protected before re-enabling threads in the object store

case.

More than that, this technique has allowed us to �nd some already threaded sections

in git-grep’s code (prior to our modi�cations) that could, in fact, lead to race conditions;

even for executions of the working tree grep. As an example, we have the following call

chain (which is performed by the producer thread after the consumers have already been

spawned):

cmd_grep() > grep_objects() > deref_tag() > parse_object()

Like the above one, we found other �ve racy spots in git-grep’s current code: the call to

gitmodules_config_oid() again in grep_objects(); two function calls in grep_submodule()

there were outside the critical section of the previous grep_read_mutex; and the calls to

userdiff_get_textconv() and userdiff_find_by_path(). These last two were guarded by

the grep_attr_mutex but their call trees had object reading operations, so they should be

guarded by grep_read_mutex as well, to avoid races with the spots protected by this lock.

The �xes for these six race conditions were perfomed in the �rst three patches of this

series’ second version: (the patches’ links and the full patch list for this series’ most recent

version will be shown later in this chapter)

• [1/11]: grep: �x race conditions on userdi� calls

• [2/11]: grep: �x race conditions at grep_submodule()

• [3/11]: grep: �x racy calls in grep_objects()

These patches were sent as the �rst ones in the series because they strive to �x possible

problems in the current code. Because of that, they still used the grep_read_mutex. In the

following patches, though, when we replace this mutex by the internal obj_read_mutex,

we also took care of using the added API for this lock to protect this places. One of

them no longer needed the external protection. userdiff_find_by_path() was only thread-

unsafe because of the previously thread-unsafe object reading. Now that the latter became

safe, so did the former. Finally, all other non-object-reading function calls that used to

be surrounded by the grep_read_mutex, were also protected by obj_read_mutex in these

following patches.

The possibility to generate call graphs permitted us to also see a call path that wasn’t

racy but could easily become, with future changes to the codebase. We are talking about

42

6 | DEVELOPMENT

the prepare_packed_git() lazy initializer at packfile.c. It is used to initialize some �elds

in a struct repository. Although this function is present in the call stack of git-grep

threads, all paths to it are currently protected by the obj_read_mutex. Besides, the main

thread usually indirectly calls this initializer before �ring the worker threads, so there’s no

risk. However, since this lazy initializer also works like an initialization checker, it is used

in many places. Therefore, future modi�cations in the codebase could easily accidentally

allow paths to the initializer from git-grep’s code, introducing a race condition. So to

prevent future headaches, we also forced this initializer to perform eagerly when setting

git-grep up. The downside is that we lose the feature of only performing intialization when

(and if) needed. But the overhead added in the cases where it wasn’t needed shouldn’t

be very noticeable. The initializer is also called at reprepare_packed_git(), which, as the

name suggests, performs reinitialization. This function is also present only in protected

paths inside git-grep’s code but it could also easily become a problem in the future. So

again, to avoid headaches, we protected its code with the obj_read_mutex.

6.2.4 Allowing More Parallelism on Submodules Functions

With the object reading functions protected, the submodule initialization calls at

grep_submodule() were pretty close to being thread-safe. So seeking an even better perfor-

mance, we tried to make the small changes needed to remove some of these calls from the

critical section (allowing more parallel work). The repo_submodule_init() call was already

thread-safe, so we just removed it from the critical section. The submodule_from_path()

and is_submodule_active() calls still needed to be protected only because they call

repo_read_gitmodules() which contains, in its call tree, operations that would other-

wise be in race condition with object reading (for example calls to parse_object() and

is_promisor_remote()). The objective of repo_read_gitmodules() is to read the reposi-

tory’s .gitmodules �le. So we could force an eager reading of this �le during git-grep’s

setup, and make submodule_from_path() and is_submodule_active() skipping calling the

thread-unsafe function if the �le was already read. This way, we could safelly move those

two calls out of the critical section. This was done through the following two patches:

(again, these patches’ links will be presented later in this chapter)

• [7/11]: submodule-con�g: add skip_if_read option to repo_read_gitmodules()

• [8/11]: grep: allow submodule functions to run in parallel

Some calls to submodule functions couldn’t be removed from the critical section

because it would require more complex changes (which would be better done in their own

patch set). For these, a commentary was left in the code mentioning what needs to be done

for such a future improvement.

6.3 | ADDITIONAL IMPROVEMENTS TO GIT-GREP

43

6.3 Additional Improvements to git-grep

At this point, we already had threads re-enabled for git-grep’s object store case with a

good speedup, as we will see in the next chapter. But before that, in this section, we will go

over two additional improvements made to the code of git-grep during this project: the

�rst is also related to performance, reducing the code protected by grep_mutex to increase

the parallel work; the second is a �x for a bug reported in the mailing list regarding sections

of the code we were already working on.

6.3.1 Removing Thread-Safe Code from Critical Section

The function add_work() at builtin/grep.c is called by the producer thread to add a

new task for the consumer threads. While studying this code to re-enable threads in the

object store case, I noticed that this function calls grep_source_load_driver(). The latter

is used to load the userdi� driver for a given �le or blob in the repository.

A di� driver is a set of options that can be enabled per �le in a repository. Initially, it

was used to control how di�s would be presented by Git, for speci�c �les in a repository.

However, as the Git project evolved, di� drivers started to be used in other contexts as well.

Between other options, a driver might specify, for example: an external command to run

instead of Git’s internal di� algorithm; a command to run in the a�ected �les to perform

text conversion on them; and whether to treat the a�ected �les as if they were binaries. Git

already ships some pre-de�ned drivers such as the python driver and tex driver, suitable

for the respective languages. But users might de�ne their own drivers in one of the Git

con�guration �les. These user de�ned di� drivers are what we intuitivelly call "userdi�

drivers". To use a driver (user de�ned or pre-shipped), the user must specify for what �les

they want the driver to be considered. And this is done in the .gitattributes �le of a

repository. A typical use case would be to include a line like this: *.tex diff=tex.

Between other usages, the di� driver is required by git-grep to know for which �les

it must perform text conversion (when --textconv is given), and to decide which �les

are binary (when --text is not given, which makes git-grep treat all �les as text). In

the last case, if a �le doesn’t have an associated di� driver (or the driver doesn’t set the

binary option), Git will fall back to manual detection. In the past, the di� driver loading

would be performed by the worker threads. But they would load the drivers in a non-

deterministic order while the underlying code was optimized to handle paths in sequential

order. So the code was changed to pre-load the driver by the main thread in commit

9dd5245 ("grep: pre-load userdiff drivers when threaded", 2012-02-02). To do that,

a call to grep_source_load_driver() was added to add_work(). However, this call is being

44

6 | DEVELOPMENT

performed inside the critical section of the grep_mutex. And, by what we saw in Figure

5.4, this is a relativelly time consuming function. So it could probably be promoting lock

contention for the consumer threads. Since grep_source_load_driver() is already thread-

safe, the call can be safelly moved out to allow more parallel work and, hopefully, help

reducing the large ammount of time spent in locking functions (as also seen in Figure 5.4).

The change is shown at Patch 6.2, which is part of this project’s main patch set (links will

be provided later in this chapter).

Program 6.2 Patch moving the thread-safe grep_source_load_driver() call out of the
critical section, for better performance.

1 diff --git a/builtin/grep.c b/builtin/grep.c

2 index 163f14b60d..d275b76647 100644

3 --- a/builtin/grep.c

4 +++ b/builtin/grep.c

5 @@ -92,22 +92,22 @@ static pthread_cond_t cond_result;

6

7 static int skip_first_line;

8

9 -static void add_work(struct grep_opt *opt, const struct grep_source *gs)

10 +static void add_work(struct grep_opt *opt, struct grep_source *gs)

11 {

12 + if (opt->binary != GREP_BINARY_TEXT)

13 + grep_source_load_driver(gs, opt->repo->index);

14 +

15 grep_lock();

16

17 while ((todo_end+1) % ARRAY_SIZE(todo) == todo_done) {

18 pthread_cond_wait(&cond_write, &grep_mutex);

19 }

20

21 todo[todo_end].source = *gs;

22 - if (opt->binary != GREP_BINARY_TEXT)

23 - grep_source_load_driver(&todo[todo_end].source,

24 - opt->repo->index);

25 todo[todo_end].done = 0;

26 strbuf_reset(&todo[todo_end].out);

27 todo_end = (todo_end + 1) % ARRAY_SIZE(todo);

28

29 pthread_cond_signal(&cond_add);

30 grep_unlock();

31 }

6.3 | ADDITIONAL IMPROVEMENTS TO GIT-GREP

45

With this simple change, we got time reductions of up to 34% in some test cases. The

full timings and results will be shown in Section 7.1.

6.3.2 Bug�x in submodule grepping

On July 8th, a Git user reported an undesired behavior with git-grep and submodules,

in the Git mailing list (Zaoui, 2019): Even when --cached was not used and no revision

was given, git-grep --recurse-submodules would still grep the submodules’ objects and

not their working trees. Since the problem was in the same code I was working on, I

decided to take a look and try to �x it during this project. After successfuly replicating9

the reported situation, the next step was to con�rm that it was indeed a bug, and not

an intentional behavior change. This was done looking for a past commit in which the

code was working as the user expected and, then, the commit that changed this – which

was f9ee2fc ("grep: recurse in-process using ’struct repository’", 02-08-2017).

Since f9ee2fc didn’t mention about the behavior change, it was probably indeed a bug,

introduced during the process of converting the previous --recurse-submodules code to

run in the same process instead of spawning new ones.

Analysing the code, the problem was found at this line inside grep_submodule(),

the function responsible for propagating the search to the submodules: hit =

grep_cache(&subopt, pathspec, 1). The function being called, although called

grep_cache() is also used to grep in the working tree. It is named like that because the

function traverses the cache (in fact, the Git index), to get the paths of the �les Git is

currently tracking, and then dispatch the search on them. To control whether this search

should read the working tree �les or the respective objects, grep_cache()’s receives a

boolean as its third parameter, named "cached". At the line of code previously quoted,

grep_cache() is always called with cached=1, thus, ignoring the working tree even when

it shouldn’t. To �x that, an aditional cached parameter was added to grep_submodule()

so that it would known the desired behavior and call grep_cache() properly. To avoid

possible future regressions, two test cases were also added to Git’s test base, testing

if git-grep --recurse-submodule respects the presence and absence of --cached in

submodules. The �nal patch containing the bug�x and test additions was already merged

into master, being part of the Git release 2.24.0:

• [1/1]: grep: �x worktree case in submodules

https://public-inbox.org/git/ba3d8a953a2cc5b4�03fefa434�d7bd6a78f15.1564505605.git.matheus.

bernardino@usp.br/

9With the series of commands presented at: https://matheustavares.gitlab.io/posts/
week-10-a-bug-in-git-grep-submodules#grep-submodules-bug-ignoring-worktree

https://public-inbox.org/git/ba3d8a953a2cc5b4ff03fefa434ffd7bd6a78f15.1564505605.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/ba3d8a953a2cc5b4ff03fefa434ffd7bd6a78f15.1564505605.git.matheus.bernardino@usp.br/
https://matheustavares.gitlab.io/posts/week-10-a-bug-in-git-grep-submodules#grep-submodules-bug-ignoring-worktree
https://matheustavares.gitlab.io/posts/week-10-a-bug-in-git-grep-submodules#grep-submodules-bug-ignoring-worktree

46

6 | DEVELOPMENT

6.4 Current State

At the time this document is being written, the most recent iteration of this project’s

main patch set is version 3. The reason why we have been focusing on describing the

second version, though, is that the main code changes were presented in it. Version 3

stayed pretty similar, only adding a few extra improvements to documentation and code.

Although these new changes are very important, they are much simpler, so there should

be no problem going through them at a faster pace. The new changes are:

1. Fixed typos in version 2’s commit messages.

2. Added a patch to adjust the default number of threads in git-grep according to the

number of logical cores available. (Previously, it would always use eight threads

when the user did not specify otherwise. This �xed number could be too many for

machines with fewer cores, and too little for machines with more cores.)

3. Added documentation about how we ensure thread-safeness for the reading of

packed objects (more on this later).

The last item is probably the most important, so it deserves some additional information.

During recent reviews of the patch set, some concerns were raised about the possibility

of a race condition when reading packed objects with multiple threads (Tan, 2019). To

understand the problem, we will need to go into some context �rst: When reading from

a pack�le, Git does not read the whole �le at once, as it can be larger than the available

memory. Besides, it would be wasteful as typically only a small section of the pack�le is

needed. So, instead, the �le is mapped into memory using mmap10, which works by fetching

the �le’s content on demand, while exposing it as the whole �le was already available in

memory. Because of the way this operation is internally implemented, though, �les over

4GB cannot be mmapped entirely in 32-bit architectures. To solve that, the Git community

came up with the idea of subdividing the process, and mmaping only what is needed at a

time. This mmapped sections of a pack�le became known as pack windows.

To decompress a packed object, Git will open and pass a pack window as input to

the zlib decompression function. This window must remain valid throughout the whole

operation. However, since decompression would now be performed in parallel, we have to

ensure that no other thread will invalidate the window, in the meantime11. In particular,

window disposal can happen for several reasons, such as reaching the maximum number

of opened windows.

10http://man7.org/linux/man-pages/man2/mmap.2.html
11In regarding to the reading of loose objects, the memory sections sent as input to decompression are

local to the stack of the executing thread. So there is no risk of they su�ering a race condition.

http://man7.org/linux/man-pages/man2/mmap.2.html

6.4 | CURRENT STATE

47

Further investigating the code, however, it was found that the window functions

already use a thread-safety mechanism. The C struct that de�nes a pack window contains

a integer �eld called "inuse_cnt". This counter is incremented before window reading

operations and checked before window disposal, only proceeding if the value is found to

be zero. So no disposal should occur if another thread has already expressed a reading

intention.

Another concern regarding threaded pack reading was the concurrent calls to

close_pack_fd(), which can close packs even with in-use windows. However, as the

mmap() documentation (Linux man-pages project, 2019) states "closing the �le descriptor

does not unmap the region". So there should be no problem here, as well.

Finally, we also considered the calls to reprepare_packed_git() (see Subsection 6.2.3),

which resets some �elds in a struct repository; specially some related to pack�les. But

we found that the function called by this one to handle pack�le opening, prepare_pack(),

won’t reopen already available packs. Therefore, the opened windows should remain

intact.

Since these are important considerations regarding the thread-safeness of packed

object reading, it was suggested to re-roll the series including them. That was what

most motivated the creation of version 3. The above explanations were inserted as code

comments and/or part of the relevant commit message(s).

6.4.1 Links for the patch set

Without further ado, bellow is the list of patches that composes the third version of this

project’s main patch set, i.e. "grep: improve threading and fix race conditions":

• [01/12] grep: �x race conditions on userdi� calls

https://public-inbox.org/git/e2f3d377f5408d3d9365b8ac1b785d6d3f0437a9.1579141989.git.matheus.

bernardino@usp.br/

• [02/12] grep: �x race conditions at grep_submodule()

https://public-inbox.org/git/6f0899701b88e255bae68e16e11a978488c0b1cd.1579141989.git.matheus.

bernardino@usp.br/

• [03/12] grep: �x racy calls in grep_objects()

https://public-inbox.org/git/5295c892ee12eb4f8a2fab2cd7e419dc04b18203.1579141989.git.matheus.

bernardino@usp.br/

• [04/12] replace-object: make replace operations thread-safe

https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.

https://public-inbox.org/git/e2f3d377f5408d3d9365b8ac1b785d6d3f0437a9.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/e2f3d377f5408d3d9365b8ac1b785d6d3f0437a9.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/6f0899701b88e255bae68e16e11a978488c0b1cd.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/6f0899701b88e255bae68e16e11a978488c0b1cd.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/5295c892ee12eb4f8a2fab2cd7e419dc04b18203.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/5295c892ee12eb4f8a2fab2cd7e419dc04b18203.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/

48

6 | DEVELOPMENT

bernardino@usp.br/

• [05/12] object-store: allow threaded access to object reading

https://public-inbox.org/git/b72e90f229dbf7d5be016fd6251a9b3ef76f2431.1579141989.git.matheus.

bernardino@usp.br/

• [06/12] grep: replace grep_read_mutex by internal obj read lock

https://public-inbox.org/git/fc1200bb07f749420dad044d39dfe30ae73ad640.1579141989.git.matheus.

bernardino@usp.br/

• [07/12] submodule-con�g: add skip_if_read option to repo_read_gitmodules()

https://public-inbox.org/git/d39d2ce9c4c4975969a7b99cbe1ee6c8abb586c1.1579141989.git.matheus.

bernardino@usp.br/

• [08/12] grep: allow submodule functions to run in parallel

https://public-inbox.org/git/af8ad95d413aa3d763769eb3ae9544e25ccbe2d1.1579141989.git.matheus.

bernardino@usp.br/

• [09/12] grep: protect packed_git [re-]initialization

https://public-inbox.org/git/0ccf79ba863a1a512506cc3aae4cc523d64ab8ae.1579141989.git.matheus.

bernardino@usp.br/

• [10/12] grep: re-enable threads in non-worktree case

https://public-inbox.org/git/6c09e9169dfb21fc2cd3f69700316d3a87e72019.1579141989.git.matheus.

bernardino@usp.br/

• [11/12] grep: move driver pre-load out of critical section

https://public-inbox.org/git/2f72f3034118432381f3c9378e70a65d27e3dfbb.1579141989.git.matheus.

bernardino@usp.br/

• [12/12] grep: use no. of cores as the default no. of thread

https://public-inbox.org/git/a5891176d7778b98ac35c756170dd334b8ee21c7.1579141989.git.matheus.

bernardino@usp.br/

The cover letter for this version can be found at: https://public-inbox.org/git/cover.

1579141989.git.matheus.bernardino@usp.br/. The patches were already merged into the

"Proposed Updates"12 branch of the Git project. They should remain there until it is decided

that they are ready to be merged into the next branch (and later into master), or until any

problem is found; in which case a re-roll might be needed.

12https://git.kernel.org/pub/scm/git/git.git/log/?h=pu

https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d7f739bc57b6f59cab7c718300c28b8c6b0a61a8.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/b72e90f229dbf7d5be016fd6251a9b3ef76f2431.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/b72e90f229dbf7d5be016fd6251a9b3ef76f2431.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/fc1200bb07f749420dad044d39dfe30ae73ad640.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/fc1200bb07f749420dad044d39dfe30ae73ad640.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d39d2ce9c4c4975969a7b99cbe1ee6c8abb586c1.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/d39d2ce9c4c4975969a7b99cbe1ee6c8abb586c1.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/af8ad95d413aa3d763769eb3ae9544e25ccbe2d1.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/af8ad95d413aa3d763769eb3ae9544e25ccbe2d1.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/0ccf79ba863a1a512506cc3aae4cc523d64ab8ae.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/0ccf79ba863a1a512506cc3aae4cc523d64ab8ae.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/6c09e9169dfb21fc2cd3f69700316d3a87e72019.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/6c09e9169dfb21fc2cd3f69700316d3a87e72019.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/2f72f3034118432381f3c9378e70a65d27e3dfbb.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/2f72f3034118432381f3c9378e70a65d27e3dfbb.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/a5891176d7778b98ac35c756170dd334b8ee21c7.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/a5891176d7778b98ac35c756170dd334b8ee21c7.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1579141989.git.matheus.bernardino@usp.br/
https://public-inbox.org/git/cover.1579141989.git.matheus.bernardino@usp.br/
https://git.kernel.org/pub/scm/git/git.git/log/?h=pu

49

Chapter 7

Results and Conclusions

7.1 Results

7.1.1 On Grenoble

The �nal results in grenoble, using the tests described at Section 3.2, can be seen in

Figures 7.1 and 7.2. These plots compare the execution times of the original code with the

code after our improvements. Note that the original code didn’t allow threads for object

store, but we enabled them with the Patch 1.1, for comparison.

1 2 4 8
0

5

10

15

20

25

6.14

3.78 3.21 3.84

6.13

3.05
2.41 2.51

Working Tree
Original w/ threads re-enabled
With our improvements

1 2 4 8

14.07 13.35

21.8

24.23

14.12

7.55

5.27 4.86

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison between original and final code
(regex 1 on grenoble)

Figure 7.1: Time comparison between the original git-grep code and the �nal code with the patches
from this project. Tests executed with regex 1 ("abcd[02]") on machine grenoble (see Appendix A).

50

7 | RESULTS AND CONCLUSIONS

1 2 4 8
0

5

10

15

20

25

9.23

5.23
4.03 4.47

9.22

4.55
3.21 3.22

Working Tree
Original w/ threads re-enabled
With our improvements

1 2 4 8

17.2

13.53

20.13

24.51

17.26

9.11

6.04 5.47

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison between original and final code
(regex 2 on grenoble)

Figure 7.2: Time comparison between the original git-grep code and the �nal code with the patches
from this project. Tests executed with regex 2 ("(static|extern) (int|double) *’") on machine
grenoble (see Appendix A).

These graphs show that the code with out improvements reached speedups of up to

3.15x over the sequential code, in the object store grepping. Compared to the threaded

code without parallel decompression, our version reached speedups of up to 4.99x, using

the same number of threads. We can also see some time reductions in the working tree

grepping, which will be discussed in Subsection 7.1.3.

Observing the big time reductions with 2 and 4 threads in contrast to the sequential

code, one might �nd it odd that the jump from 4 to 8 threads only produced a small

performance boost. However, this is totally expected, given the hardware used. Note that

both mango an grenoble have 8 logical cores but only 4 physical ones. The doubled number

of logical cores happens through Intel’s Hyper-Threading technology, which allows more

than one simulteneous thread execution in a single physical core. Although it does boost

parallel performance, it cannot reach the full processing power of actually having twice

the number of physical cores. And that is one of the reasons why we don’t see such a big

performance improvement from the executions with 4 to 8 threads in these tests.

7.1.2 On Mango

As previously mentioned, the problem we tackled in this project is very closely related

to I/O. So it is also important to validate the performance improvements in machines with

7.1 | RESULTS

51

SSD. Figures 7.3 and 7.4 show the results for the same tests of the Subsection 7.1.1 but on

mango.

1 2 4 8
0

5

10

15

20

25

7.39

4.48 3.58 3.23

7.87

3.91
2.98 3.04

Working Tree
Original w/ threads re-enabled
With our improvements

1 2 4 8

17.81

14.68 15.19 15.24

17.85

9.32

6.22 5.69

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison between original and final code
(regex 1 on mango)

Figure 7.3: Time comparison between the original git-grep code and the �nal code with the patches
from this project. Tests executed with regex 1 ("abcd[02]") on machine mango (see Appendix A).

52

7 | RESULTS AND CONCLUSIONS

1 2 4 8
0

5

10

15

20

25

11.33

6.33
4.61 4.22

11.36

5.58
3.75 3.8

Working Tree
Original w/ threads re-enabled
With our improvements

1 2 4 8

21.8

15.82 15.93 16.51

21.83

11.26

7.19 6.52

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison between original and final code
(regex 2 on mango)

Figure 7.4: Time comparison between the original git-grep code and the �nal code with the patches
from this project. Tests executed with regex 2 ("(static|extern) (int|double) *’") on machine
mango (see Appendix A).

These plots show an even greater speedups over the sequential code, reaching a factor

of up to 3.34x. It is also interesting to notice how the addition of threads behaved di�erent

between grenoble and mango, regarding the original code. While the former used to have

an increasing slowdown with more threads, the latter used to keep the execution times

in a plateau. This could be due to a variety of reasons. One hypothesis is that the SSD

allowed for greater performance when threaded reading, in comparison to the HDD. But

it could also be other hardware di�erences, such as the CPUs’ clock speeds when working

multithreaded. Nevertheless, the improved code managed to successfully harness the

available parallel power with good speedups in both machines.

7.1.3 Patch 6.2 and Working Tree Speedup

In both mango’s and grenoble’s plots, we can see some time reduction in the working

tree case, reaching speedups of up to 1.52x over the original threaded code. We didn’t

really expect to see this di�erence in this git-grep case, since it normally wouldn’t bene�t

from parallel decompression. And indeed, further investigating the test executions, we saw

that neither oid_object_info_extended() nor git_inflate() were called. So the speedup

couldn’t be comming from parallel decompression. Therefore, we were lead to believe that

it was a result of the critical section reduction patch (6.2).

7.1 | RESULTS

53

To measure how this small modi�cation, alone, contributed to the observed perfor-

mance, we generated the graphs shown in Figures 7.5 and 7.6. Since the said patch was

at the tip of the development branch (i.e., it was the last modi�cation made), to observe

its contribution, we just had to repeat the tests in the parent commit (which has all the

previous changes we made, but not this one). We have choosen to only show the results

on grenoble since they are su�cient to explain why we observed the said speedup.

1 2 4 8
0

5

10

15

20

25

6.12

3.76 3.2 3.85

6.13

3.05
2.41 2.51

Working Tree
Before patch 6.2
After patch 6.2

1 2 4 8

14.1

8.02

5.93 5.9

14.12

7.55

5.27 4.86

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison before and after patch 6.2
(regex 1 on grenoble)

Figure 7.5: Time comparison of git-grep’s code before and after Patch 6.2. Note that the "before"
version already has parallel access to decompression. Tests executed with regex 1 ("abcd[02]") on
machine grenoble (see Appendix A).

54

7 | RESULTS AND CONCLUSIONS

1 2 4 8
0

5

10

15

20

25

9.23

5.24
4.04 4.43

9.22

4.55
3.21 3.22

Working Tree
Before patch 6.2
After patch 6.2

1 2 4 8

17.22

9.56

6.72 6.46

17.26

9.11

6.04 5.47

Object Store

0.0 0.2 0.4 0.6 0.8 1.0
Threads

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(s
)

Time comparison before and after patch 6.2
(regex 2 on grenoble)

Figure 7.6: Time comparison of git-grep’s code before and after Patch 6.2. Note that the "before"
version already has parallel access to decompression. Tests executed with regex 2 ("(static|extern)
(int|double) *’") on machine grenoble (see Appendix A).

Comparing Figures 7.4 and 7.6, we can see that parallel decompression without the

said patch didn’t change the elapsed times for the working tree grepping. Therefore, all

the speedup observed in this case (in Figure 7.4) did, in fact, come only from the Patch 6.2.

It is impressive how such a small change could be so e�ective in increasing performance.

Alone, it was responsible for time reductions of up to 17% in the object store case, and 34%

in the working tree case.

7.2 Conclusions

From the observed results, we can conclude that the proposed changes successfully

allowed for thread re-enabling in git-grep’s object store case, increasing performance by

a large factor: we observed speedups of up to 3.34x over the original code and almost 5x

over the threaded code without the improvements. Additionally, the changes also allowed

git-grep to take even more advantage of parallel processing power in the working tree

case as well, with observed speedups of up to 1.53x.

Besides the performance improvements in git-grep, the proposed changes can also

bene�t future optimization projects in Git: Many Git commands and features depend

on the object reading machinery which, until now, had to be accessed in a serialized

way. But in this project, we created an API that allows thread-safe object reading with

7.3 | WHAT IS NEXT

55

good performance (thanks to parallel decompression). Since object reading can sometimes

be a bottleneck, this API has a great potential to be used for future optimizations in

the codebase; both to introduce threads in currently sequential sections and to improve

threaded performance in already parallel ones.

One observation that could be pointed out as a drawback in the proposed changes,

is the performance drop in the single-threaded executions of git-grep. This could have

happened due to the forced eager initialization of previously lazy initializers and the

locking/unlocking overhead of the added mutex to protect the replace-object.h API

(mentioned in Subsection 6.2.2). Nevertheless, in almost all cases, the slow down is so

small that it can be neglected: apart from a single test case, the time di�erences in all other

measurements are only visible in the second decimal place.

Regarding the GSoC program, in which this project was participating, we have suc-

cessfully reached the end of the last evaluation and received the approved status. With all

the learning acquired throughout this process, I decided to write an uno�cial �rst-steps

guide on how to contribute to Git (Tavares, 2019a). The idea was to have a place for my

own reference, but also, to hopefully help future newcomming contributors. Members of

the community also supported the idea, already sending suggestions.

7.3 What is next

For future improvements, the --textconv code could be refactored for even better

performance. We noticed that the multithreaded git-grep can get slow in the object store

case when --textconv is used and there’re too many text conversions to perfom. Probably,

the reason is that the obj_read_lock is used to protect fill_textconv(), and therefore

there is a mutual exclusion between textconv executions and object readings. Because

both are time consuming operations, not being able to perform them in parallel can cause

performance drops.

There are also some side tasks that I got to know during this project and I want to work

on in the near feature. The �rst is related to the in-memory alternates list. As mentioned

in Section 6.2.2, the object directories of submodules are currently being added to this list

by git-grep so that future threaded calls to object reading functions can �nd them. But

adding to this list can be bad for both memory and performance, so it might be good to

avoid doing that and, instead, pass the submodules struct repository * data down to

the threads. Another place where this is done is at the function config_from_gitmodules()

during submodule con�guration. It should be possible to avoid adding to the alternates

list in this case as well. Additionally, these changes might also bring the possibility of

56

7 | RESULTS AND CONCLUSIONS

performing more operations in git-grep’s grep_submodule() function in parallel.

Besides these tasks related to the alternates list, there are some consistency issues yet to

be solved: The call graphs we generated for git-grep (see Subsection 6.2.3) showed some call

chains originated at parse_object(), containing functions that receive a struct repository

* parameter, but call others that use the_repository internally. These inconsistent uses

of the_repository are not currently problematic, but it might be a good idea to pass the

repository down for future uses.

And �nally, there are other possible optimizations to work on for git-grep. One of them

can be seen at Hamano, 2019. Basically, there is a cache for the text converted blobs which

is stored in the object store of the superproject (for both its blobs and submodule’s blobs).

This does not perform well, however, if the user performs a git-grep on the superproject

and then, to further inspect, on the submodule, because the cache is then lost. So one

possible improvement is to store the cache in the repository to which each blob belongs.

Pedro Souza, a computer science student at the University of São Paulo, has already started

an e�ort towards solving this issue.

57

Chapter 8

Personal and Critical

Assessment

Working on this project has been a very challenging but also rewarding experience.

It gave me the chance to learn a lot more about software development, CPU parallelism,

collaborative working and the open-source world. I’m also very grateful for being able to

work and interact with so many amazing developers in the Git community. And I hope I

can continue contributing to Git and learning from its code and the community.

The idea of contributing to an open-source project during my capstone project came in

late 2018. At that time, some colleagues and I started contributing to the Linux Kernel, as

part of a course work. Rodrigo Siqueira, our mentor during the course, always encouraged

us to be part of the open-source community. And to embrace the oportunity of learning

from so many successful projects which the code is available for us to study. With that in

mind, and intrigued by how Git would store all that information that we programmers

generate, I decided to give it a try studying its code. I quickly marveled at the beauty of

Git’s objects concept and the very optimized way they were stored. Having the chance to

conciliate my will to learn more about Git’s internals with the possibility of participating

in GSoC was great! Rodrigo Siqueira was the one that �rst mentioned I should try making

it my capstone project as well. And that is how it all started.

8.1 Main Di�culties

The �rst di�culty I had in this project was the process of learning the code (or, in fact,

the sections of the code I worked on). Git is a big project with many features. So without

the knowlegde of where was what, I felt kind of overwhelmed and lost at the beginning.

58

8 | PERSONAL AND CRITICAL ASSESSMENT

Also, since my project involved going trought a lot of call chains, I had to take some

time to understand what each function was doing and if it could possibly have another

function in its call chain that changed global variables. But with some code studying

and documentation reading, in addition to the support from the community, I eventually

overcomed this initial barrier and got much more comfortable with the repository. The

lesson I took is that, although starting on a big project might be di�cult in the beginning,

once the basics are learned, it gets much easier to infeer new ideas and develop further

knwoledge and intuitions.

Writting this �nal essay was also a great challenge. I’m used to writting small technical

blog posts and emails, but I had never written such a big and formal document before. It was

quite challenging. Especially the attention required with the verbal voice and grammatical

person used.

Besides these two previously mentioned personal di�culties, most of the remaining

challenges were in the technical side. From here to the end of this section, I will try to list

some of them, together with the solution we applied. Most of them relate to the process

of ensuring thread-safeness for a particular function (and its call tree). That’s a crutial

task while parallelizing new sections, to avoid introducing race conditions. And yet, it

can be very challenging and demand some code navigation and studying. As many of

the challenges that arise during this process seem to be common between parallelization

projects, I hope these comments also serve as a possible reference for similar projects.

Git’s codebase contains some amazing techniques for performance, memory manage-

ment, and even "meta" techniques to make the code cleaner. Unfotunately, some of them

are, a priori, not thread-safe, which can complicate the parallelization process. One of

them is the use of lazy initializers. This is a very interesting technique because it avoids

initializing variables that won’t be needed in a particular execution. Besides saving memory,

this is also good for performance. The negative side is that, as oposite to pre-initializing

everything before spawning threads, the lazy initializers are usually not thread-safe. The

solution was to protect them or, if we knew the resource would be needed, force an eager

initialization.

Another nice feature that is unfortunatelly not thread-safe is the return of static bu�ers

in function calls. I.e., instead of returning a dynamic allocated data, a function can have a

static variable in its scope (which will last throughout the whole execution) and return its

address. The biggest advantage is that the callers don’t have the responsability of freeing

the memory after using it. But two parallel calls to the function may overwrite the result

from one another. In this project, the said functions were protected with a mutex. But

another solution would be to make them hold an array of static data, where each position

8.2 | EXTRA ACTIVITIES

59

would be "owned" by a di�erent thread. Then, to di�erenciate which thread is calling and

use the proper memory, the thread private storage could be used.

And �nally, the codebase makes use of some strategical global variables to avoid

passing down the same data in lots of call stacks. One good example is the variable

the_repository which holds information from the repository in which the Git process is

operating. Unfortunatelly, though, this can sometimes complicate the process of evaluating

thread-safetness. Especially since this variable can be used in di�erent abstraction levels,

one might think a function is safe for not using global states but, in fact, it contains another

function in its call tree which does. The solution used in this project was not particularlly

fast: we manually scanned the call trees for global variables usage, with some help from

call graph generators, ctags to easily jump between symbols, and custom scripts to �lter

out known safe paths from the call graph. There seems to be a much easier way, though,

using GCC with plugins1. This wasn’t used in this project simply because we didn’t know

the possibility back then.

8.2 Extra Activities

Working on this project and interacting with the Git and open-source community has

allowed me to participate in amazing activities/events, for which I am very grateful. In

August, me and Renato Geh, who is another student from the University of São Paulo,

presented at the linuxdev-br2 conference, talking about object-oriented techniques in C

(Tavares and Geh, 2019). The goal of our presentation was to show real use cases of the

said techniques in code snippets from Linux and Git. I focused mostly on Git’s dir-iterator

API, which I worked on as my �rst contribution (see Section 2.3). I also participated in this

year’s Git Summit, a virtual meeting to discuss current ideas being developed in Git and

future plans for the project. As a new contributor, I participated mostly as a spectator, but

it was an amazing learning experience.

Finally, I also want to mention the local community we are forming at University of São

Paulo, to help other students start contributing to Git as well. This is an initiative inside

FLUSP3, a group of students at the University of São Paulo focused on contributing and

promoting the usage of FLOSS. This year, some of us started meeting weekly to exchange

Git learnings and tips on how to contribute to it. As part of the group’s value of mutual

knowledge sharing, I paired up with some colleagues to pass on what I’ve learned during

this project and help some of them sending their �rst contributions. This local community

1https://gcc-python-plugin.readthedocs.io/en/latest/working-with-c.html#finding-global-variables
2https://linuxdev-br.net/
3https://flusp.ime.usp.br/

https://gcc-python-plugin.readthedocs.io/en/latest/working-with-c.html#finding-global-variables
https://linuxdev-br.net/
https://flusp.ime.usp.br/

60

8 | PERSONAL AND CRITICAL ASSESSMENT

have a great potential and, hopefully, will grow, in the following years, as a great �rst

point of contact to the FLOSS world, for many students.

61

Appendix A

Machines Used in Tests

Mango Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz

Cores: 4

Threads: 8

RAM: 16GB

Storage: PCIe SSD SAMSUNG MZVLB512HAJQ-000L2

OS: Manjaro Linux, Linux kernel 4.14.149-1-MANJARO

Topology: Figure A.1

Grenoble Processor: Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz

Cores: 4

Threads: 8

RAM: 32GB

Storage: HDD Seagate Barracuda ST1000DM003-1ER162, 7200 rpm, SATA 3.1 1

OS: Debian 10.0, Linux kernel 4.19.0-5-amd64

Topology: Figure A.2

1This machine also has a SanDisk SDSSDA120G SSD with SATA 3.2 bus which holds the system root
partition. However, all test �les (which include the Git binaries and testing data) were stored in the home
partition which is at the mentioned HDD.

62

APPENDIX A

Machine (15GB)

Package P#0

L3 (6144KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#7

PCI 10de:1c8d
7,9

PCI 8086:591b

renderD128 controlD64

card0

PCI 8086:24fd

wlp2s0

0,20,2

PCI 144d:a808

nvme0n1

3,93,9

Host: mango

Indexes: physical

Date: qua 23 out 2019 10:30:02 -03

Figure A.1: Topology of the machine mango.
(Generated with lstopo from the hwlock package.)

https://www.open-mpi.org/projects/hwloc/

A | MACHINES USED IN TESTS

63

Machine (31GB)

Package P#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#7

PCI 10de:17c2

renderD128

card0

2,02,0

PCI 8086:1502

eth0

PCI 8086:10d3

eth1

0,20,2

PCI 8086:1c02

sda sdb

sdc sr0

Host: debian

Indexes: physical

Date: qua 23 out 2019 10:41:22 -03

Figure A.2: Topology of the machine grenoble.
(Generated with lstopo from the hwlock package.)

https://www.open-mpi.org/projects/hwloc/

64

Annex A

GCC patch for call graph

dumping

Following is the initial patch wrote by Giuliano Belinassi1 to make GCC dump the

compiled binary’s call graph during the Link Time Optimization (LTO) pass. It is appliable

over commit 0198bef ("PR c++/91868 - improve -Wshadow location.", 2019-09-24). To

make use of this feature, the patched GCC must be invoked with the �ag -flto. It is also im-

portant to compile only one binary at a time and move the generated /tmp/lto_cgraph.dot

�le between compilations. Otherwise, the graph description resulting from the second

compilation will be appended to the output of the �rst, resulting in a corrupted �le.

This initial version was written as a temporary solution, since the dumping wasn’t

controlled by any �ag or option. But later, Giuliano wrote a more polished version (com-

posed by the patches Belinassi, 2019a and Belinassi, 2019b), which was sent to the GCC

mailing list and already accepted. The feature should be part of GCC version 10. Also,

with Giuliano’s assistance, I later wrote a GCC plugin2 combining this feature with the

function �ltering options described in Subsection 6.2.3.

Program A.1 GCC patch for call graph dumping

1 diff --git a/gcc/cgraph.c b/gcc/cgraph.c

2 index 331b363c1..9c3a52d28 100644

3 --- a/gcc/cgraph.c

4 +++ b/gcc/cgraph.c

5 @@ -2142,7 +2142,7 @@ cgraph_node::dump_graphviz (FILE *f)

cont ⟶
1giuliano.belinassi@usp.br
2https://github.com/matheustavares/gcc-callgraph-plugin

mailto:giuliano.belinassi@usp.br
https://github.com/matheustavares/gcc-callgraph-plugin

A | GCC PATCH FOR CALL GRAPH DUMPING

65

⟶ cont
6 {

7 cgraph_node *callee = edge->callee;

8

9 - fprintf (f, "\t\"%s\" -> \"%s\"\n", name (), callee->name ());

10 + fprintf (f, "\t\"%s\" -> \"%s\"\n", dump_name (), callee->dump_name ());

11 }

12 }

13

14 diff --git a/gcc/cgraphunit.c b/gcc/cgraphunit.c

15 index cb08efeb5..d54054ea1 100644

16 --- a/gcc/cgraphunit.c

17 +++ b/gcc/cgraphunit.c

18 @@ -2617,6 +2617,13 @@ symbol_table::compile (void)

19 timevar_start (TV_CGRAPH_IPA_PASSES);

20 ipa_passes ();

21 timevar_stop (TV_CGRAPH_IPA_PASSES);

22 +

23 + if (in_lto_p)

24 + {

25 + FILE *dump_file = fopen("/tmp/lto_cgraph.dot", "w");

26 + symtab->dump_graphviz (dump_file);

27 + fclose (dump_file);

28 + }

29 }

30 /* Do nothing else if any IPA pass found errors or if we are just streaming LTO. */

31 if (seen_error ()

66

References

[Belinassi 2019a] Giuliano Belinassi. Patch "[PATCH v2] Make lto-dump dump call-
graph in DOT format". 2019. url: https : / /gcc .gnu.org/ml/gcc- patches/2019-

07/msg00145.html (visited on 12/04/2019) (cit. on p. 64).

[Belinassi 2019b] Giuliano Belinassi. Patch "Fix incorrect merge of con�ictant names
in ‘dump_graphviz‘". 2019. url: https : / / gcc . gnu . org / ml / gcc - patches / 2019 -

10/msg01534.html (visited on 12/04/2019) (cit. on p. 64).

[Chacon 2008] Scott Chacon. Introduction to Git. 2008. url: https://www.youtube.

com/watch?v=xbLVvrb2-fY (visited on 10/16/2019) (cit. on p. 17).

[Chen 2018] Erik Chen. Issue 18: "git blame" is slow on large repositories. 2018. url:

https://bugs.chromium.org/p/git/issues/detail?id=18 (visited on 12/03/2019)

(cit. on p. 6).

[Chacon and Straub 2014] Scott Chacon and Ben Straub. Pro Git. Apress, Nov. 2014

(cit. on pp. 1, 7, 15, 17).

[Deutsch 1996] L. Peter Deutsch. RFC 1951: DEFLATE Compressed Data Format Spec-
i�cation version 1.3. 1996. url: https : / / tools . ietf .org/html/rfc1951 (visited on

12/03/2019) (cit. on pp. ii, 14).

[Eastlake and Jones 2001] Donald E. Eastlake and Paul E. Jones. RFC 3174: US Secure
Hash Algorithm 1 (SHA1). 2001. url: https://tools.ietf.org/html/rfc3174 (visited

on 12/03/2019) (cit. on p. 14).

[Git Project 2014] Git Project. Pack heuristics. 2014. url: https://git-scm.com/docs/

pack-heuristics (visited on 10/16/2019) (cit. on p. 18).

[Git Project 2018] Git Project. Pack Format. 2018. url: https://git-scm.com/docs/

pack-format (visited on 10/16/2019) (cit. on p. 18).

https://gcc.gnu.org/ml/gcc-patches/2019-07/msg00145.html
https://gcc.gnu.org/ml/gcc-patches/2019-07/msg00145.html
https://gcc.gnu.org/ml/gcc-patches/2019-10/msg01534.html
https://gcc.gnu.org/ml/gcc-patches/2019-10/msg01534.html
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://bugs.chromium.org/p/git/issues/detail?id=18
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc3174
https://git-scm.com/docs/pack-heuristics
https://git-scm.com/docs/pack-heuristics
https://git-scm.com/docs/pack-format
https://git-scm.com/docs/pack-format

REFERENCES

67

[Git Project 2019] Git Project. Git’s Repository Documentation. 2019. url: https://

github.com/git/git/tree/master/Documentation (visited on 12/04/2019) (cit. on

p. 7).

[Google Trends 2019] Google Trends. Google Trends: Comparing Git, Subversion,
Mercurial, Perforce and CVS. 2019. url: https://trends.google.com/trends/explore?

date=2004-01-01%202019-10-28&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%

2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g (visited on 10/28/2019) (cit. on p. 2).

[Hamano 2019] Junio C Hamano. Email "Re: [RFC PATCH 0/3] grep: don’t add subrepos
to in-memory alternates". 2019. url: https://public-inbox.org/git/xmqq36gt5qhr.

fsf@gitster-ct.c.googlers.com/ (visited on 12/02/2019) (cit. on p. 56).

[IEEE and The Open Group 2018] IEEE and The Open Group. The Open Group Base
Speci�cations Issue 7, 2018 edition, section "Thread Extensions". 2018. url: https:

//pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap02.html#tag_

22_02_09_08 (visited on 11/26/2019) (cit. on p. 39).

[Linux man-pages project 2019] Linuxman-pages project. MMAP(2) Linux Manual
Page. 2019. url: http://man7.org/linux/man-pages/man2/mmap.2.html (visited

on 01/18/2020) (cit. on p. 47).

[Nguyen 2019] Duy Nguyen. Snippet "hacky parallel grep". 2019. url: https://gitlab.

com/snippets/1834613 (visited on 12/05/2019) (cit. on p. 8).

[Roelofs et al. 2006] Greg Roelofs, Jean-loup Gailly, and Mark Adler. zlib Technical
Details. 2006. url: https://zlib.net/zlib_tech.html (visited on 12/03/2019) (cit. on

p. 14).

[Roelofs et al. 2010] Greg Roelofs, Jean-loup Gailly, and Mark Adler. zlib FAQ. 2010.

url: https://zlib.net/zlib_faq.html#faq21 (visited on 11/26/2019) (cit. on p. 27).

[Shaffer et al. 2019] Emily Shaffer, Junio C Hamano, and Derrick Stolee. Email
Thread "[Git Developer Blog] [PATCH] post: a tour of git’s object types". 2019. url:

https://public- inbox.org/git/5dab3dc6-3942-422e-d29d-3e8682ebc4df@gmail.

com/T/#mf6c760fd87f7416d39e5ac54e9e33df9d835be87 (visited on 12/01/2019)

(cit. on p. 15).

https://github.com/git/git/tree/master/Documentation
https://github.com/git/git/tree/master/Documentation
https://trends.google.com/trends/explore?date=2004-01-01%202019-10-28&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g
https://trends.google.com/trends/explore?date=2004-01-01%202019-10-28&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g
https://trends.google.com/trends/explore?date=2004-01-01%202019-10-28&q=%2Fm%2F05vqwg,%2Fm%2F012ct9,%2Fm%2F08441_,%2Fm%2F08w6d6,%2Fm%2F09d6g
https://public-inbox.org/git/xmqq36gt5qhr.fsf@gitster-ct.c.googlers.com/
https://public-inbox.org/git/xmqq36gt5qhr.fsf@gitster-ct.c.googlers.com/
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap02.html#tag_22_02_09_08
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap02.html#tag_22_02_09_08
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xsh_chap02.html#tag_22_02_09_08
http://man7.org/linux/man-pages/man2/mmap.2.html
https://gitlab.com/snippets/1834613
https://gitlab.com/snippets/1834613
https://zlib.net/zlib_tech.html
https://zlib.net/zlib_faq.html#faq21
https://public-inbox.org/git/5dab3dc6-3942-422e-d29d-3e8682ebc4df@gmail.com/T/#mf6c760fd87f7416d39e5ac54e9e33df9d835be87
https://public-inbox.org/git/5dab3dc6-3942-422e-d29d-3e8682ebc4df@gmail.com/T/#mf6c760fd87f7416d39e5ac54e9e33df9d835be87

68

REFERENCES

[Spajic 2018] Zvonimir Spajic. Understanding Git - Index. 2018. url: https : / /

hackernoon.com/understanding-git-index-4821a0765cf (visited on 11/22/2019)

(cit. on p. 7).

[Stack Exchange, Inc. 2018] Stack Exchange, Inc. Stack Over�ow Developer Survey
Results 2018. 2018. url: https://insights.stackoverflow.com/survey/2018#work-_-

version-control (visited on 10/28/2019) (cit. on pp. i, 2).

[Tan 2019] Jonathan Tan. Email "Re: [PATCH v2 05/11] object-store: allow threaded ac-
cess to object reading". 2019. url: https://public- inbox.org/git/20191112025418.

254880-1-jonathantanmy@google.com/ (visited on 12/01/2019) (cit. on p. 46).

[Tavares, Couder, et al. 2019] Matheus Tavares, Christian Couder, et al. Email
Thread "Questions on GSoC 2019 Ideas". 2019. url: https://public- inbox.org/git/

CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.

com/t/#u (visited on 12/04/2019) (cit. on p. 8).

[Tavares 2019a] Matheus Tavares. First Steps Contributing to Git. 2019. url: https :

/ /matheustavares .gitlab. io /posts / first - steps- contributing- to- git (visited on

10/28/2019) (cit. on pp. ii, 55).

[Tavares 2019b] Matheus Tavares. GSoC Proposal: Make pack access code thread-safe.

2019. url: https://matheustavares.gitlab.io/assets/Matheus_Tavares_GSoC_

Proposal.pdf (visited on 12/04/2019) (cit. on p. 8).

[Tavares 2019c] Matheus Tavares. Matheus Tavares’ GSoC Blog. 2019. url: https : / /

matheustavares.gitlab.io/gsoc/ (visited on 12/04/2019) (cit. on p. 8).

[Tavares, Chen, et al. 2019] Matheus Tavares, Erik Chen, and Harry Cutts. Email
Thread "Git blame’s performance on chromium". 2019. url: https://groups.google.

com/a/chromium.org/d/topic/chromium-dev/oYe69KzyG_U/discussion (visited

on 11/30/2019) (cit. on p. 12).

[Tavares and Geh 2019] Matheus Tavares and Renato Geh. Object Oriented Tech-
niques in C: A Case Study on Git and Linux3. 2019. url: https://www.youtube.

com/watch?v=x0ELqk2lCcI (visited on 12/04/2019) (cit. on p. 59).

[Torvalds 2005] Linus Torvalds. Email "Re: Kernel SCM saga.." 2005. url: https://lkml.

org/lkml/2005/4/8/34 (visited on 11/30/2019) (cit. on p. 2).

3Slides available at https://matheustavares.gitlab.io/assets/oop_git_and_kernel.pdf

https://hackernoon.com/understanding-git-index-4821a0765cf
https://hackernoon.com/understanding-git-index-4821a0765cf
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://public-inbox.org/git/20191112025418.254880-1-jonathantanmy@google.com/
https://public-inbox.org/git/20191112025418.254880-1-jonathantanmy@google.com/
https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.com/t/#u
https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.com/t/#u
https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.com/t/#u
https://matheustavares.gitlab.io/posts/first-steps-contributing-to-git
https://matheustavares.gitlab.io/posts/first-steps-contributing-to-git
https://matheustavares.gitlab.io/assets/Matheus_Tavares_GSoC_Proposal.pdf
https://matheustavares.gitlab.io/assets/Matheus_Tavares_GSoC_Proposal.pdf
https://matheustavares.gitlab.io/gsoc/
https://matheustavares.gitlab.io/gsoc/
https://groups.google.com/a/chromium.org/d/topic/chromium-dev/oYe69KzyG_U/discussion
https://groups.google.com/a/chromium.org/d/topic/chromium-dev/oYe69KzyG_U/discussion
https://www.youtube.com/watch?v=x0ELqk2lCcI
https://www.youtube.com/watch?v=x0ELqk2lCcI
https://lkml.org/lkml/2005/4/8/34
https://lkml.org/lkml/2005/4/8/34
https://matheustavares.gitlab.io/assets/oop_git_and_kernel.pdf

REFERENCES

69

[Yerburgh 2019] Edward Yerburgh. Intrusive linked lists. 2019. url: https : / /www.

data-structures-in-practice.com/intrusive-linked-lists/ (visited on 11/24/2019)

(cit. on pp. 33, 34).

[Zager 2014] Stefan Zager. Email "Make the git codebase thread-safe". 2014. url: https:

/ / public - inbox . org / git / CA + TurHgyUK5sfCKrK + 3xY8AeOg0t66vEvFxX =

JiA9wXww7eZXQ@mail.gmail.com/ (visited on 11/30/2019) (cit. on p. 12).

[Zaoui 2019] Daniel Zaoui. Email "Weird behavior with git grep --recurse-submodules".
2019. url: https://public-inbox.org/git/20190708111459.135abe50@zen/ (visited

on 12/05/2019) (cit. on p. 45).

https://www.data-structures-in-practice.com/intrusive-linked-lists/
https://www.data-structures-in-practice.com/intrusive-linked-lists/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.com/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.com/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.com/
https://public-inbox.org/git/20190708111459.135abe50@zen/

	Glossary
	Introduction
	Context and Historical Background
	Version Control Systems
	A Summary of Git's History

	Motivation and Goal
	The git-grep Command
	Performance of git-grep
	Objective

	Document Structure

	Preparatory Period
	Getting to Know the Community
	Google Summer of Code
	First Contribution

	Metodology
	Workflow
	Performance Tests

	Theoretical Background
	Git's Objects
	Storing Formats
	Object Reading

	Profiling
	Development
	First Approach: Protect Only Global States
	Next Approach: Parallel zlib Decompression
	Race Condition at Delta Base Cache
	Dealing with –textconv and –recurse-submodules
	Analysing Call Graphs
	Allowing More Parallelism on Submodules Functions

	Additional Improvements to git-grep
	Removing Thread-Safe Code from Critical Section
	Bugfix in submodule grepping

	Current State
	Links for the patch set

	Results and Conclusions
	Results
	On Grenoble
	On Mango
	Patch 6.2 and Working Tree Speedup

	Conclusions
	What is next

	Personal and Critical Assessment
	Main Difficulties
	Extra Activities

	Machines Used in Tests
	GCC patch for call graph dumping
	References

